 85bf1341f3
			
		
	
	85bf1341f3
	
	
	
		
			
			Frontend Enhancements: - Complete React TypeScript frontend with modern UI components - Distributed workflows management interface with real-time updates - Socket.IO integration for live agent status monitoring - Agent management dashboard with cluster visualization - Project management interface with metrics and task tracking - Responsive design with proper error handling and loading states Backend Infrastructure: - Distributed coordinator for multi-agent workflow orchestration - Cluster management API with comprehensive agent operations - Enhanced database models for agents and projects - Project service for filesystem-based project discovery - Performance monitoring and metrics collection - Comprehensive API documentation and error handling Documentation: - Complete distributed development guide (README_DISTRIBUTED.md) - Comprehensive development report with architecture insights - System configuration templates and deployment guides The platform now provides a complete web interface for managing the distributed AI cluster with real-time monitoring, workflow orchestration, and agent coordination capabilities. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
		
			2015 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			2015 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /*! decimal.js-light v2.5.1 https://github.com/MikeMcl/decimal.js-light/LICENCE */
 | |
| ;(function (globalScope) {
 | |
|   'use strict';
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    *  decimal.js-light v2.5.1
 | |
|    *  An arbitrary-precision Decimal type for JavaScript.
 | |
|    *  https://github.com/MikeMcl/decimal.js-light
 | |
|    *  Copyright (c) 2020 Michael Mclaughlin <M8ch88l@gmail.com>
 | |
|    *  MIT Expat Licence
 | |
|    */
 | |
| 
 | |
| 
 | |
|   // -----------------------------------  EDITABLE DEFAULTS  ------------------------------------ //
 | |
| 
 | |
| 
 | |
|     // The limit on the value of `precision`, and on the value of the first argument to
 | |
|     // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.
 | |
|   var MAX_DIGITS = 1e9,                        // 0 to 1e9
 | |
| 
 | |
| 
 | |
|     // The initial configuration properties of the Decimal constructor.
 | |
|     Decimal = {
 | |
| 
 | |
|       // These values must be integers within the stated ranges (inclusive).
 | |
|       // Most of these values can be changed during run-time using `Decimal.config`.
 | |
| 
 | |
|       // The maximum number of significant digits of the result of a calculation or base conversion.
 | |
|       // E.g. `Decimal.config({ precision: 20 });`
 | |
|       precision: 20,                         // 1 to MAX_DIGITS
 | |
| 
 | |
|       // The rounding mode used by default by `toInteger`, `toDecimalPlaces`, `toExponential`,
 | |
|       // `toFixed`, `toPrecision` and `toSignificantDigits`.
 | |
|       //
 | |
|       // ROUND_UP         0 Away from zero.
 | |
|       // ROUND_DOWN       1 Towards zero.
 | |
|       // ROUND_CEIL       2 Towards +Infinity.
 | |
|       // ROUND_FLOOR      3 Towards -Infinity.
 | |
|       // ROUND_HALF_UP    4 Towards nearest neighbour. If equidistant, up.
 | |
|       // ROUND_HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
 | |
|       // ROUND_HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
 | |
|       // ROUND_HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
 | |
|       // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
 | |
|       //
 | |
|       // E.g.
 | |
|       // `Decimal.rounding = 4;`
 | |
|       // `Decimal.rounding = Decimal.ROUND_HALF_UP;`
 | |
|       rounding: 4,                           // 0 to 8
 | |
| 
 | |
|       // The exponent value at and beneath which `toString` returns exponential notation.
 | |
|       // JavaScript numbers: -7
 | |
|       toExpNeg: -7,                          // 0 to -MAX_E
 | |
| 
 | |
|       // The exponent value at and above which `toString` returns exponential notation.
 | |
|       // JavaScript numbers: 21
 | |
|       toExpPos:  21,                         // 0 to MAX_E
 | |
| 
 | |
|       // The natural logarithm of 10.
 | |
|       // 115 digits
 | |
|       LN10: '2.302585092994045684017991454684364207601101488628772976033327900967572609677352480235997205089598298341967784042286'
 | |
|     },
 | |
| 
 | |
| 
 | |
|   // ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //
 | |
| 
 | |
| 
 | |
|     external = true,
 | |
| 
 | |
|     decimalError = '[DecimalError] ',
 | |
|     invalidArgument = decimalError + 'Invalid argument: ',
 | |
|     exponentOutOfRange = decimalError + 'Exponent out of range: ',
 | |
| 
 | |
|     mathfloor = Math.floor,
 | |
|     mathpow = Math.pow,
 | |
| 
 | |
|     isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
 | |
| 
 | |
|     ONE,
 | |
|     BASE = 1e7,
 | |
|     LOG_BASE = 7,
 | |
|     MAX_SAFE_INTEGER = 9007199254740991,
 | |
|     MAX_E = mathfloor(MAX_SAFE_INTEGER / LOG_BASE),    // 1286742750677284
 | |
| 
 | |
|     // Decimal.prototype object
 | |
|     P = {};
 | |
| 
 | |
| 
 | |
|   // Decimal prototype methods
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    *  absoluteValue                       abs
 | |
|    *  comparedTo                          cmp
 | |
|    *  decimalPlaces                       dp
 | |
|    *  dividedBy                           div
 | |
|    *  dividedToIntegerBy                  idiv
 | |
|    *  equals                              eq
 | |
|    *  exponent
 | |
|    *  greaterThan                         gt
 | |
|    *  greaterThanOrEqualTo                gte
 | |
|    *  isInteger                           isint
 | |
|    *  isNegative                          isneg
 | |
|    *  isPositive                          ispos
 | |
|    *  isZero
 | |
|    *  lessThan                            lt
 | |
|    *  lessThanOrEqualTo                   lte
 | |
|    *  logarithm                           log
 | |
|    *  minus                               sub
 | |
|    *  modulo                              mod
 | |
|    *  naturalExponential                  exp
 | |
|    *  naturalLogarithm                    ln
 | |
|    *  negated                             neg
 | |
|    *  plus                                add
 | |
|    *  precision                           sd
 | |
|    *  squareRoot                          sqrt
 | |
|    *  times                               mul
 | |
|    *  toDecimalPlaces                     todp
 | |
|    *  toExponential
 | |
|    *  toFixed
 | |
|    *  toInteger                           toint
 | |
|    *  toNumber
 | |
|    *  toPower                             pow
 | |
|    *  toPrecision
 | |
|    *  toSignificantDigits                 tosd
 | |
|    *  toString
 | |
|    *  valueOf                             val
 | |
|    */
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the absolute value of this Decimal.
 | |
|    *
 | |
|    */
 | |
|   P.absoluteValue = P.abs = function () {
 | |
|     var x = new this.constructor(this);
 | |
|     if (x.s) x.s = 1;
 | |
|     return x;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return
 | |
|    *   1    if the value of this Decimal is greater than the value of `y`,
 | |
|    *  -1    if the value of this Decimal is less than the value of `y`,
 | |
|    *   0    if they have the same value
 | |
|    *
 | |
|    */
 | |
|   P.comparedTo = P.cmp = function (y) {
 | |
|     var i, j, xdL, ydL,
 | |
|       x = this;
 | |
| 
 | |
|     y = new x.constructor(y);
 | |
| 
 | |
|     // Signs differ?
 | |
|     if (x.s !== y.s) return x.s || -y.s;
 | |
| 
 | |
|     // Compare exponents.
 | |
|     if (x.e !== y.e) return x.e > y.e ^ x.s < 0 ? 1 : -1;
 | |
| 
 | |
|     xdL = x.d.length;
 | |
|     ydL = y.d.length;
 | |
| 
 | |
|     // Compare digit by digit.
 | |
|     for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {
 | |
|       if (x.d[i] !== y.d[i]) return x.d[i] > y.d[i] ^ x.s < 0 ? 1 : -1;
 | |
|     }
 | |
| 
 | |
|     // Compare lengths.
 | |
|     return xdL === ydL ? 0 : xdL > ydL ^ x.s < 0 ? 1 : -1;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return the number of decimal places of the value of this Decimal.
 | |
|    *
 | |
|    */
 | |
|   P.decimalPlaces = P.dp = function () {
 | |
|     var x = this,
 | |
|       w = x.d.length - 1,
 | |
|       dp = (w - x.e) * LOG_BASE;
 | |
| 
 | |
|     // Subtract the number of trailing zeros of the last word.
 | |
|     w = x.d[w];
 | |
|     if (w) for (; w % 10 == 0; w /= 10) dp--;
 | |
| 
 | |
|     return dp < 0 ? 0 : dp;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal divided by `y`, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.dividedBy = P.div = function (y) {
 | |
|     return divide(this, new this.constructor(y));
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the integer part of dividing the value of this Decimal
 | |
|    * by the value of `y`, truncated to `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.dividedToIntegerBy = P.idiv = function (y) {
 | |
|     var x = this,
 | |
|       Ctor = x.constructor;
 | |
|     return round(divide(x, new Ctor(y), 0, 1), Ctor.precision);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.equals = P.eq = function (y) {
 | |
|     return !this.cmp(y);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return the (base 10) exponent value of this Decimal (this.e is the base 10000000 exponent).
 | |
|    *
 | |
|    */
 | |
|   P.exponent = function () {
 | |
|     return getBase10Exponent(this);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is greater than the value of `y`, otherwise return
 | |
|    * false.
 | |
|    *
 | |
|    */
 | |
|   P.greaterThan = P.gt = function (y) {
 | |
|     return this.cmp(y) > 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is greater than or equal to the value of `y`,
 | |
|    * otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.greaterThanOrEqualTo = P.gte = function (y) {
 | |
|     return this.cmp(y) >= 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is an integer, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.isInteger = P.isint = function () {
 | |
|     return this.e > this.d.length - 2;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is negative, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.isNegative = P.isneg = function () {
 | |
|     return this.s < 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is positive, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.isPositive = P.ispos = function () {
 | |
|     return this.s > 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is 0, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.isZero = function () {
 | |
|     return this.s === 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is less than `y`, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.lessThan = P.lt = function (y) {
 | |
|     return this.cmp(y) < 0;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.
 | |
|    *
 | |
|    */
 | |
|   P.lessThanOrEqualTo = P.lte = function (y) {
 | |
|     return this.cmp(y) < 1;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return the logarithm of the value of this Decimal to the specified base, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    * If no base is specified, return log[10](x).
 | |
|    *
 | |
|    * log[base](x) = ln(x) / ln(base)
 | |
|    *
 | |
|    * The maximum error of the result is 1 ulp (unit in the last place).
 | |
|    *
 | |
|    * [base] {number|string|Decimal} The base of the logarithm.
 | |
|    *
 | |
|    */
 | |
|   P.logarithm = P.log = function (base) {
 | |
|     var r,
 | |
|       x = this,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision,
 | |
|       wpr = pr + 5;
 | |
| 
 | |
|     // Default base is 10.
 | |
|     if (base === void 0) {
 | |
|       base = new Ctor(10);
 | |
|     } else {
 | |
|       base = new Ctor(base);
 | |
| 
 | |
|       // log[-b](x) = NaN
 | |
|       // log[0](x)  = NaN
 | |
|       // log[1](x)  = NaN
 | |
|       if (base.s < 1 || base.eq(ONE)) throw Error(decimalError + 'NaN');
 | |
|     }
 | |
| 
 | |
|     // log[b](-x) = NaN
 | |
|     // log[b](0) = -Infinity
 | |
|     if (x.s < 1) throw Error(decimalError + (x.s ? 'NaN' : '-Infinity'));
 | |
| 
 | |
|     // log[b](1) = 0
 | |
|     if (x.eq(ONE)) return new Ctor(0);
 | |
| 
 | |
|     external = false;
 | |
|     r = divide(ln(x, wpr), ln(base, wpr), wpr);
 | |
|     external = true;
 | |
| 
 | |
|     return round(r, pr);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal minus `y`, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.minus = P.sub = function (y) {
 | |
|     var x = this;
 | |
|     y = new x.constructor(y);
 | |
|     return x.s == y.s ? subtract(x, y) : add(x, (y.s = -y.s, y));
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal modulo `y`, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.modulo = P.mod = function (y) {
 | |
|     var q,
 | |
|       x = this,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision;
 | |
| 
 | |
|     y = new Ctor(y);
 | |
| 
 | |
|     // x % 0 = NaN
 | |
|     if (!y.s) throw Error(decimalError + 'NaN');
 | |
| 
 | |
|     // Return x if x is 0.
 | |
|     if (!x.s) return round(new Ctor(x), pr);
 | |
| 
 | |
|     // Prevent rounding of intermediate calculations.
 | |
|     external = false;
 | |
|     q = divide(x, y, 0, 1).times(y);
 | |
|     external = true;
 | |
| 
 | |
|     return x.minus(q);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the natural exponential of the value of this Decimal,
 | |
|    * i.e. the base e raised to the power the value of this Decimal, truncated to `precision`
 | |
|    * significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.naturalExponential = P.exp = function () {
 | |
|     return exp(this);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the natural logarithm of the value of this Decimal,
 | |
|    * truncated to `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.naturalLogarithm = P.ln = function () {
 | |
|     return ln(this);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by
 | |
|    * -1.
 | |
|    *
 | |
|    */
 | |
|   P.negated = P.neg = function () {
 | |
|     var x = new this.constructor(this);
 | |
|     x.s = -x.s || 0;
 | |
|     return x;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal plus `y`, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.plus = P.add = function (y) {
 | |
|     var x = this;
 | |
|     y = new x.constructor(y);
 | |
|     return x.s == y.s ? add(x, y) : subtract(x, (y.s = -y.s, y));
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return the number of significant digits of the value of this Decimal.
 | |
|    *
 | |
|    * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
 | |
|    *
 | |
|    */
 | |
|   P.precision = P.sd = function (z) {
 | |
|     var e, sd, w,
 | |
|       x = this;
 | |
| 
 | |
|     if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z);
 | |
| 
 | |
|     e = getBase10Exponent(x) + 1;
 | |
|     w = x.d.length - 1;
 | |
|     sd = w * LOG_BASE + 1;
 | |
|     w = x.d[w];
 | |
| 
 | |
|     // If non-zero...
 | |
|     if (w) {
 | |
| 
 | |
|       // Subtract the number of trailing zeros of the last word.
 | |
|       for (; w % 10 == 0; w /= 10) sd--;
 | |
| 
 | |
|       // Add the number of digits of the first word.
 | |
|       for (w = x.d[0]; w >= 10; w /= 10) sd++;
 | |
|     }
 | |
| 
 | |
|     return z && e > sd ? e : sd;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the square root of this Decimal, truncated to `precision`
 | |
|    * significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.squareRoot = P.sqrt = function () {
 | |
|     var e, n, pr, r, s, t, wpr,
 | |
|       x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     // Negative or zero?
 | |
|     if (x.s < 1) {
 | |
|       if (!x.s) return new Ctor(0);
 | |
| 
 | |
|       // sqrt(-x) = NaN
 | |
|       throw Error(decimalError + 'NaN');
 | |
|     }
 | |
| 
 | |
|     e = getBase10Exponent(x);
 | |
|     external = false;
 | |
| 
 | |
|     // Initial estimate.
 | |
|     s = Math.sqrt(+x);
 | |
| 
 | |
|     // Math.sqrt underflow/overflow?
 | |
|     // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
 | |
|     if (s == 0 || s == 1 / 0) {
 | |
|       n = digitsToString(x.d);
 | |
|       if ((n.length + e) % 2 == 0) n += '0';
 | |
|       s = Math.sqrt(n);
 | |
|       e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);
 | |
| 
 | |
|       if (s == 1 / 0) {
 | |
|         n = '5e' + e;
 | |
|       } else {
 | |
|         n = s.toExponential();
 | |
|         n = n.slice(0, n.indexOf('e') + 1) + e;
 | |
|       }
 | |
| 
 | |
|       r = new Ctor(n);
 | |
|     } else {
 | |
|       r = new Ctor(s.toString());
 | |
|     }
 | |
| 
 | |
|     pr = Ctor.precision;
 | |
|     s = wpr = pr + 3;
 | |
| 
 | |
|     // Newton-Raphson iteration.
 | |
|     for (;;) {
 | |
|       t = r;
 | |
|       r = t.plus(divide(x, t, wpr + 2)).times(0.5);
 | |
| 
 | |
|       if (digitsToString(t.d).slice(0, wpr) === (n = digitsToString(r.d)).slice(0, wpr)) {
 | |
|         n = n.slice(wpr - 3, wpr + 1);
 | |
| 
 | |
|         // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or
 | |
|         // 4999, i.e. approaching a rounding boundary, continue the iteration.
 | |
|         if (s == wpr && n == '4999') {
 | |
| 
 | |
|           // On the first iteration only, check to see if rounding up gives the exact result as the
 | |
|           // nines may infinitely repeat.
 | |
|           round(t, pr + 1, 0);
 | |
| 
 | |
|           if (t.times(t).eq(x)) {
 | |
|             r = t;
 | |
|             break;
 | |
|           }
 | |
|         } else if (n != '9999') {
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         wpr += 4;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     external = true;
 | |
| 
 | |
|     return round(r, pr);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal times `y`, truncated to
 | |
|    * `precision` significant digits.
 | |
|    *
 | |
|    */
 | |
|   P.times = P.mul = function (y) {
 | |
|     var carry, e, i, k, r, rL, t, xdL, ydL,
 | |
|       x = this,
 | |
|       Ctor = x.constructor,
 | |
|       xd = x.d,
 | |
|       yd = (y = new Ctor(y)).d;
 | |
| 
 | |
|     // Return 0 if either is 0.
 | |
|     if (!x.s || !y.s) return new Ctor(0);
 | |
| 
 | |
|     y.s *= x.s;
 | |
|     e = x.e + y.e;
 | |
|     xdL = xd.length;
 | |
|     ydL = yd.length;
 | |
| 
 | |
|     // Ensure xd points to the longer array.
 | |
|     if (xdL < ydL) {
 | |
|       r = xd;
 | |
|       xd = yd;
 | |
|       yd = r;
 | |
|       rL = xdL;
 | |
|       xdL = ydL;
 | |
|       ydL = rL;
 | |
|     }
 | |
| 
 | |
|     // Initialise the result array with zeros.
 | |
|     r = [];
 | |
|     rL = xdL + ydL;
 | |
|     for (i = rL; i--;) r.push(0);
 | |
| 
 | |
|     // Multiply!
 | |
|     for (i = ydL; --i >= 0;) {
 | |
|       carry = 0;
 | |
|       for (k = xdL + i; k > i;) {
 | |
|         t = r[k] + yd[i] * xd[k - i - 1] + carry;
 | |
|         r[k--] = t % BASE | 0;
 | |
|         carry = t / BASE | 0;
 | |
|       }
 | |
| 
 | |
|       r[k] = (r[k] + carry) % BASE | 0;
 | |
|     }
 | |
| 
 | |
|     // Remove trailing zeros.
 | |
|     for (; !r[--rL];) r.pop();
 | |
| 
 | |
|     if (carry) ++e;
 | |
|     else r.shift();
 | |
| 
 | |
|     y.d = r;
 | |
|     y.e = e;
 | |
| 
 | |
|     return external ? round(y, Ctor.precision) : y;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp`
 | |
|    * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted.
 | |
|    *
 | |
|    * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal.
 | |
|    *
 | |
|    * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
 | |
|    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|    *
 | |
|    */
 | |
|   P.toDecimalPlaces = P.todp = function (dp, rm) {
 | |
|     var x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     x = new Ctor(x);
 | |
|     if (dp === void 0) return x;
 | |
| 
 | |
|     checkInt32(dp, 0, MAX_DIGITS);
 | |
| 
 | |
|     if (rm === void 0) rm = Ctor.rounding;
 | |
|     else checkInt32(rm, 0, 8);
 | |
| 
 | |
|     return round(x, dp + getBase10Exponent(x) + 1, rm);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a string representing the value of this Decimal in exponential notation rounded to
 | |
|    * `dp` fixed decimal places using rounding mode `rounding`.
 | |
|    *
 | |
|    * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
 | |
|    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|    *
 | |
|    */
 | |
|   P.toExponential = function (dp, rm) {
 | |
|     var str,
 | |
|       x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     if (dp === void 0) {
 | |
|       str = toString(x, true);
 | |
|     } else {
 | |
|       checkInt32(dp, 0, MAX_DIGITS);
 | |
| 
 | |
|       if (rm === void 0) rm = Ctor.rounding;
 | |
|       else checkInt32(rm, 0, 8);
 | |
| 
 | |
|       x = round(new Ctor(x), dp + 1, rm);
 | |
|       str = toString(x, true, dp + 1);
 | |
|     }
 | |
| 
 | |
|     return str;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a string representing the value of this Decimal in normal (fixed-point) notation to
 | |
|    * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is
 | |
|    * omitted.
 | |
|    *
 | |
|    * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'.
 | |
|    *
 | |
|    * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive.
 | |
|    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|    *
 | |
|    * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
 | |
|    * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
 | |
|    * (-0).toFixed(3) is '0.000'.
 | |
|    * (-0.5).toFixed(0) is '-0'.
 | |
|    *
 | |
|    */
 | |
|   P.toFixed = function (dp, rm) {
 | |
|     var str, y,
 | |
|       x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     if (dp === void 0) return toString(x);
 | |
| 
 | |
|     checkInt32(dp, 0, MAX_DIGITS);
 | |
| 
 | |
|     if (rm === void 0) rm = Ctor.rounding;
 | |
|     else checkInt32(rm, 0, 8);
 | |
| 
 | |
|     y = round(new Ctor(x), dp + getBase10Exponent(x) + 1, rm);
 | |
|     str = toString(y.abs(), false, dp + getBase10Exponent(y) + 1);
 | |
| 
 | |
|     // To determine whether to add the minus sign look at the value before it was rounded,
 | |
|     // i.e. look at `x` rather than `y`.
 | |
|     return x.isneg() && !x.isZero() ? '-' + str : str;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using
 | |
|    * rounding mode `rounding`.
 | |
|    *
 | |
|    */
 | |
|   P.toInteger = P.toint = function () {
 | |
|     var x = this,
 | |
|       Ctor = x.constructor;
 | |
|     return round(new Ctor(x), getBase10Exponent(x) + 1, Ctor.rounding);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return the value of this Decimal converted to a number primitive.
 | |
|    *
 | |
|    */
 | |
|   P.toNumber = function () {
 | |
|     return +this;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal raised to the power `y`,
 | |
|    * truncated to `precision` significant digits.
 | |
|    *
 | |
|    * For non-integer or very large exponents pow(x, y) is calculated using
 | |
|    *
 | |
|    *   x^y = exp(y*ln(x))
 | |
|    *
 | |
|    * The maximum error is 1 ulp (unit in last place).
 | |
|    *
 | |
|    * y {number|string|Decimal} The power to which to raise this Decimal.
 | |
|    *
 | |
|    */
 | |
|   P.toPower = P.pow = function (y) {
 | |
|     var e, k, pr, r, sign, yIsInt,
 | |
|       x = this,
 | |
|       Ctor = x.constructor,
 | |
|       guard = 12,
 | |
|       yn = +(y = new Ctor(y));
 | |
| 
 | |
|     // pow(x, 0) = 1
 | |
|     if (!y.s) return new Ctor(ONE);
 | |
| 
 | |
|     x = new Ctor(x);
 | |
| 
 | |
|     // pow(0, y > 0) = 0
 | |
|     // pow(0, y < 0) = Infinity
 | |
|     if (!x.s) {
 | |
|       if (y.s < 1) throw Error(decimalError + 'Infinity');
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // pow(1, y) = 1
 | |
|     if (x.eq(ONE)) return x;
 | |
| 
 | |
|     pr = Ctor.precision;
 | |
| 
 | |
|     // pow(x, 1) = x
 | |
|     if (y.eq(ONE)) return round(x, pr);
 | |
| 
 | |
|     e = y.e;
 | |
|     k = y.d.length - 1;
 | |
|     yIsInt = e >= k;
 | |
|     sign = x.s;
 | |
| 
 | |
|     if (!yIsInt) {
 | |
| 
 | |
|       // pow(x < 0, y non-integer) = NaN
 | |
|       if (sign < 0) throw Error(decimalError + 'NaN');
 | |
| 
 | |
|     // If y is a small integer use the 'exponentiation by squaring' algorithm.
 | |
|     } else if ((k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {
 | |
|       r = new Ctor(ONE);
 | |
| 
 | |
|       // Max k of 9007199254740991 takes 53 loop iterations.
 | |
|       // Maximum digits array length; leaves [28, 34] guard digits.
 | |
|       e = Math.ceil(pr / LOG_BASE + 4);
 | |
| 
 | |
|       external = false;
 | |
| 
 | |
|       for (;;) {
 | |
|         if (k % 2) {
 | |
|           r = r.times(x);
 | |
|           truncate(r.d, e);
 | |
|         }
 | |
| 
 | |
|         k = mathfloor(k / 2);
 | |
|         if (k === 0) break;
 | |
| 
 | |
|         x = x.times(x);
 | |
|         truncate(x.d, e);
 | |
|       }
 | |
| 
 | |
|       external = true;
 | |
| 
 | |
|       return y.s < 0 ? new Ctor(ONE).div(r) : round(r, pr);
 | |
|     }
 | |
| 
 | |
|     // Result is negative if x is negative and the last digit of integer y is odd.
 | |
|     sign = sign < 0 && y.d[Math.max(e, k)] & 1 ? -1 : 1;
 | |
| 
 | |
|     x.s = 1;
 | |
|     external = false;
 | |
|     r = y.times(ln(x, pr + guard));
 | |
|     external = true;
 | |
|     r = exp(r);
 | |
|     r.s = sign;
 | |
| 
 | |
|     return r;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a string representing the value of this Decimal rounded to `sd` significant digits
 | |
|    * using rounding mode `rounding`.
 | |
|    *
 | |
|    * Return exponential notation if `sd` is less than the number of digits necessary to represent
 | |
|    * the integer part of the value in normal notation.
 | |
|    *
 | |
|    * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
 | |
|    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|    *
 | |
|    */
 | |
|   P.toPrecision = function (sd, rm) {
 | |
|     var e, str,
 | |
|       x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     if (sd === void 0) {
 | |
|       e = getBase10Exponent(x);
 | |
|       str = toString(x, e <= Ctor.toExpNeg || e >= Ctor.toExpPos);
 | |
|     } else {
 | |
|       checkInt32(sd, 1, MAX_DIGITS);
 | |
| 
 | |
|       if (rm === void 0) rm = Ctor.rounding;
 | |
|       else checkInt32(rm, 0, 8);
 | |
| 
 | |
|       x = round(new Ctor(x), sd, rm);
 | |
|       e = getBase10Exponent(x);
 | |
|       str = toString(x, sd <= e || e <= Ctor.toExpNeg, sd);
 | |
|     }
 | |
| 
 | |
|     return str;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd`
 | |
|    * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if
 | |
|    * omitted.
 | |
|    *
 | |
|    * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive.
 | |
|    * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
 | |
|    *
 | |
|    */
 | |
|   P.toSignificantDigits = P.tosd = function (sd, rm) {
 | |
|     var x = this,
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     if (sd === void 0) {
 | |
|       sd = Ctor.precision;
 | |
|       rm = Ctor.rounding;
 | |
|     } else {
 | |
|       checkInt32(sd, 1, MAX_DIGITS);
 | |
| 
 | |
|       if (rm === void 0) rm = Ctor.rounding;
 | |
|       else checkInt32(rm, 0, 8);
 | |
|     }
 | |
| 
 | |
|     return round(new Ctor(x), sd, rm);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a string representing the value of this Decimal.
 | |
|    *
 | |
|    * Return exponential notation if this Decimal has a positive exponent equal to or greater than
 | |
|    * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`.
 | |
|    *
 | |
|    */
 | |
|   P.toString = P.valueOf = P.val = P.toJSON = function () {
 | |
|     var x = this,
 | |
|       e = getBase10Exponent(x),
 | |
|       Ctor = x.constructor;
 | |
| 
 | |
|     return toString(x, e <= Ctor.toExpNeg || e >= Ctor.toExpPos);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers.
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    *  add                 P.minus, P.plus
 | |
|    *  checkInt32          P.todp, P.toExponential, P.toFixed, P.toPrecision, P.tosd
 | |
|    *  digitsToString      P.log, P.sqrt, P.pow, toString, exp, ln
 | |
|    *  divide              P.div, P.idiv, P.log, P.mod, P.sqrt, exp, ln
 | |
|    *  exp                 P.exp, P.pow
 | |
|    *  getBase10Exponent   P.exponent, P.sd, P.toint, P.sqrt, P.todp, P.toFixed, P.toPrecision,
 | |
|    *                      P.toString, divide, round, toString, exp, ln
 | |
|    *  getLn10             P.log, ln
 | |
|    *  getZeroString       digitsToString, toString
 | |
|    *  ln                  P.log, P.ln, P.pow, exp
 | |
|    *  parseDecimal        Decimal
 | |
|    *  round               P.abs, P.idiv, P.log, P.minus, P.mod, P.neg, P.plus, P.toint, P.sqrt,
 | |
|    *                      P.times, P.todp, P.toExponential, P.toFixed, P.pow, P.toPrecision, P.tosd,
 | |
|    *                      divide, getLn10, exp, ln
 | |
|    *  subtract            P.minus, P.plus
 | |
|    *  toString            P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf
 | |
|    *  truncate            P.pow
 | |
|    *
 | |
|    *  Throws:             P.log, P.mod, P.sd, P.sqrt, P.pow,  checkInt32, divide, round,
 | |
|    *                      getLn10, exp, ln, parseDecimal, Decimal, config
 | |
|    */
 | |
| 
 | |
| 
 | |
|   function add(x, y) {
 | |
|     var carry, d, e, i, k, len, xd, yd,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision;
 | |
| 
 | |
|     // If either is zero...
 | |
|     if (!x.s || !y.s) {
 | |
| 
 | |
|       // Return x if y is zero.
 | |
|       // Return y if y is non-zero.
 | |
|       if (!y.s) y = new Ctor(x);
 | |
|       return external ? round(y, pr) : y;
 | |
|     }
 | |
| 
 | |
|     xd = x.d;
 | |
|     yd = y.d;
 | |
| 
 | |
|     // x and y are finite, non-zero numbers with the same sign.
 | |
| 
 | |
|     k = x.e;
 | |
|     e = y.e;
 | |
|     xd = xd.slice();
 | |
|     i = k - e;
 | |
| 
 | |
|     // If base 1e7 exponents differ...
 | |
|     if (i) {
 | |
|       if (i < 0) {
 | |
|         d = xd;
 | |
|         i = -i;
 | |
|         len = yd.length;
 | |
|       } else {
 | |
|         d = yd;
 | |
|         e = k;
 | |
|         len = xd.length;
 | |
|       }
 | |
| 
 | |
|       // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.
 | |
|       k = Math.ceil(pr / LOG_BASE);
 | |
|       len = k > len ? k + 1 : len + 1;
 | |
| 
 | |
|       if (i > len) {
 | |
|         i = len;
 | |
|         d.length = 1;
 | |
|       }
 | |
| 
 | |
|       // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
 | |
|       d.reverse();
 | |
|       for (; i--;) d.push(0);
 | |
|       d.reverse();
 | |
|     }
 | |
| 
 | |
|     len = xd.length;
 | |
|     i = yd.length;
 | |
| 
 | |
|     // If yd is longer than xd, swap xd and yd so xd points to the longer array.
 | |
|     if (len - i < 0) {
 | |
|       i = len;
 | |
|       d = yd;
 | |
|       yd = xd;
 | |
|       xd = d;
 | |
|     }
 | |
| 
 | |
|     // Only start adding at yd.length - 1 as the further digits of xd can be left as they are.
 | |
|     for (carry = 0; i;) {
 | |
|       carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;
 | |
|       xd[i] %= BASE;
 | |
|     }
 | |
| 
 | |
|     if (carry) {
 | |
|       xd.unshift(carry);
 | |
|       ++e;
 | |
|     }
 | |
| 
 | |
|     // Remove trailing zeros.
 | |
|     // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 | |
|     for (len = xd.length; xd[--len] == 0;) xd.pop();
 | |
| 
 | |
|     y.d = xd;
 | |
|     y.e = e;
 | |
| 
 | |
|     return external ? round(y, pr) : y;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function checkInt32(i, min, max) {
 | |
|     if (i !== ~~i || i < min || i > max) {
 | |
|       throw Error(invalidArgument + i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function digitsToString(d) {
 | |
|     var i, k, ws,
 | |
|       indexOfLastWord = d.length - 1,
 | |
|       str = '',
 | |
|       w = d[0];
 | |
| 
 | |
|     if (indexOfLastWord > 0) {
 | |
|       str += w;
 | |
|       for (i = 1; i < indexOfLastWord; i++) {
 | |
|         ws = d[i] + '';
 | |
|         k = LOG_BASE - ws.length;
 | |
|         if (k) str += getZeroString(k);
 | |
|         str += ws;
 | |
|       }
 | |
| 
 | |
|       w = d[i];
 | |
|       ws = w + '';
 | |
|       k = LOG_BASE - ws.length;
 | |
|       if (k) str += getZeroString(k);
 | |
|     } else if (w === 0) {
 | |
|       return '0';
 | |
|     }
 | |
| 
 | |
|     // Remove trailing zeros of last w.
 | |
|     for (; w % 10 === 0;) w /= 10;
 | |
| 
 | |
|     return str + w;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   var divide = (function () {
 | |
| 
 | |
|     // Assumes non-zero x and k, and hence non-zero result.
 | |
|     function multiplyInteger(x, k) {
 | |
|       var temp,
 | |
|         carry = 0,
 | |
|         i = x.length;
 | |
| 
 | |
|       for (x = x.slice(); i--;) {
 | |
|         temp = x[i] * k + carry;
 | |
|         x[i] = temp % BASE | 0;
 | |
|         carry = temp / BASE | 0;
 | |
|       }
 | |
| 
 | |
|       if (carry) x.unshift(carry);
 | |
| 
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     function compare(a, b, aL, bL) {
 | |
|       var i, r;
 | |
| 
 | |
|       if (aL != bL) {
 | |
|         r = aL > bL ? 1 : -1;
 | |
|       } else {
 | |
|         for (i = r = 0; i < aL; i++) {
 | |
|           if (a[i] != b[i]) {
 | |
|             r = a[i] > b[i] ? 1 : -1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|     function subtract(a, b, aL) {
 | |
|       var i = 0;
 | |
| 
 | |
|       // Subtract b from a.
 | |
|       for (; aL--;) {
 | |
|         a[aL] -= i;
 | |
|         i = a[aL] < b[aL] ? 1 : 0;
 | |
|         a[aL] = i * BASE + a[aL] - b[aL];
 | |
|       }
 | |
| 
 | |
|       // Remove leading zeros.
 | |
|       for (; !a[0] && a.length > 1;) a.shift();
 | |
|     }
 | |
| 
 | |
|     return function (x, y, pr, dp) {
 | |
|       var cmp, e, i, k, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0, yL, yz,
 | |
|         Ctor = x.constructor,
 | |
|         sign = x.s == y.s ? 1 : -1,
 | |
|         xd = x.d,
 | |
|         yd = y.d;
 | |
| 
 | |
|       // Either 0?
 | |
|       if (!x.s) return new Ctor(x);
 | |
|       if (!y.s) throw Error(decimalError + 'Division by zero');
 | |
| 
 | |
|       e = x.e - y.e;
 | |
|       yL = yd.length;
 | |
|       xL = xd.length;
 | |
|       q = new Ctor(sign);
 | |
|       qd = q.d = [];
 | |
| 
 | |
|       // Result exponent may be one less than e.
 | |
|       for (i = 0; yd[i] == (xd[i] || 0); ) ++i;
 | |
|       if (yd[i] > (xd[i] || 0)) --e;
 | |
| 
 | |
|       if (pr == null) {
 | |
|         sd = pr = Ctor.precision;
 | |
|       } else if (dp) {
 | |
|         sd = pr + (getBase10Exponent(x) - getBase10Exponent(y)) + 1;
 | |
|       } else {
 | |
|         sd = pr;
 | |
|       }
 | |
| 
 | |
|       if (sd < 0) return new Ctor(0);
 | |
| 
 | |
|       // Convert precision in number of base 10 digits to base 1e7 digits.
 | |
|       sd = sd / LOG_BASE + 2 | 0;
 | |
|       i = 0;
 | |
| 
 | |
|       // divisor < 1e7
 | |
|       if (yL == 1) {
 | |
|         k = 0;
 | |
|         yd = yd[0];
 | |
|         sd++;
 | |
| 
 | |
|         // k is the carry.
 | |
|         for (; (i < xL || k) && sd--; i++) {
 | |
|           t = k * BASE + (xd[i] || 0);
 | |
|           qd[i] = t / yd | 0;
 | |
|           k = t % yd | 0;
 | |
|         }
 | |
| 
 | |
|       // divisor >= 1e7
 | |
|       } else {
 | |
| 
 | |
|         // Normalise xd and yd so highest order digit of yd is >= BASE/2
 | |
|         k = BASE / (yd[0] + 1) | 0;
 | |
| 
 | |
|         if (k > 1) {
 | |
|           yd = multiplyInteger(yd, k);
 | |
|           xd = multiplyInteger(xd, k);
 | |
|           yL = yd.length;
 | |
|           xL = xd.length;
 | |
|         }
 | |
| 
 | |
|         xi = yL;
 | |
|         rem = xd.slice(0, yL);
 | |
|         remL = rem.length;
 | |
| 
 | |
|         // Add zeros to make remainder as long as divisor.
 | |
|         for (; remL < yL;) rem[remL++] = 0;
 | |
| 
 | |
|         yz = yd.slice();
 | |
|         yz.unshift(0);
 | |
|         yd0 = yd[0];
 | |
| 
 | |
|         if (yd[1] >= BASE / 2) ++yd0;
 | |
| 
 | |
|         do {
 | |
|           k = 0;
 | |
| 
 | |
|           // Compare divisor and remainder.
 | |
|           cmp = compare(yd, rem, yL, remL);
 | |
| 
 | |
|           // If divisor < remainder.
 | |
|           if (cmp < 0) {
 | |
| 
 | |
|             // Calculate trial digit, k.
 | |
|             rem0 = rem[0];
 | |
|             if (yL != remL) rem0 = rem0 * BASE + (rem[1] || 0);
 | |
| 
 | |
|             // k will be how many times the divisor goes into the current remainder.
 | |
|             k = rem0 / yd0 | 0;
 | |
| 
 | |
|             //  Algorithm:
 | |
|             //  1. product = divisor * trial digit (k)
 | |
|             //  2. if product > remainder: product -= divisor, k--
 | |
|             //  3. remainder -= product
 | |
|             //  4. if product was < remainder at 2:
 | |
|             //    5. compare new remainder and divisor
 | |
|             //    6. If remainder > divisor: remainder -= divisor, k++
 | |
| 
 | |
|             if (k > 1) {
 | |
|               if (k >= BASE) k = BASE - 1;
 | |
| 
 | |
|               // product = divisor * trial digit.
 | |
|               prod = multiplyInteger(yd, k);
 | |
|               prodL = prod.length;
 | |
|               remL = rem.length;
 | |
| 
 | |
|               // Compare product and remainder.
 | |
|               cmp = compare(prod, rem, prodL, remL);
 | |
| 
 | |
|               // product > remainder.
 | |
|               if (cmp == 1) {
 | |
|                 k--;
 | |
| 
 | |
|                 // Subtract divisor from product.
 | |
|                 subtract(prod, yL < prodL ? yz : yd, prodL);
 | |
|               }
 | |
|             } else {
 | |
| 
 | |
|               // cmp is -1.
 | |
|               // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1
 | |
|               // to avoid it. If k is 1 there is a need to compare yd and rem again below.
 | |
|               if (k == 0) cmp = k = 1;
 | |
|               prod = yd.slice();
 | |
|             }
 | |
| 
 | |
|             prodL = prod.length;
 | |
|             if (prodL < remL) prod.unshift(0);
 | |
| 
 | |
|             // Subtract product from remainder.
 | |
|             subtract(rem, prod, remL);
 | |
| 
 | |
|             // If product was < previous remainder.
 | |
|             if (cmp == -1) {
 | |
|               remL = rem.length;
 | |
| 
 | |
|               // Compare divisor and new remainder.
 | |
|               cmp = compare(yd, rem, yL, remL);
 | |
| 
 | |
|               // If divisor < new remainder, subtract divisor from remainder.
 | |
|               if (cmp < 1) {
 | |
|                 k++;
 | |
| 
 | |
|                 // Subtract divisor from remainder.
 | |
|                 subtract(rem, yL < remL ? yz : yd, remL);
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             remL = rem.length;
 | |
|           } else if (cmp === 0) {
 | |
|             k++;
 | |
|             rem = [0];
 | |
|           }    // if cmp === 1, k will be 0
 | |
| 
 | |
|           // Add the next digit, k, to the result array.
 | |
|           qd[i++] = k;
 | |
| 
 | |
|           // Update the remainder.
 | |
|           if (cmp && rem[0]) {
 | |
|             rem[remL++] = xd[xi] || 0;
 | |
|           } else {
 | |
|             rem = [xd[xi]];
 | |
|             remL = 1;
 | |
|           }
 | |
| 
 | |
|         } while ((xi++ < xL || rem[0] !== void 0) && sd--);
 | |
|       }
 | |
| 
 | |
|       // Leading zero?
 | |
|       if (!qd[0]) qd.shift();
 | |
| 
 | |
|       q.e = e;
 | |
| 
 | |
|       return round(q, dp ? pr + getBase10Exponent(q) + 1 : pr);
 | |
|     };
 | |
|   })();
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the natural exponential of `x` truncated to `sd`
 | |
|    * significant digits.
 | |
|    *
 | |
|    * Taylor/Maclaurin series.
 | |
|    *
 | |
|    * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ...
 | |
|    *
 | |
|    * Argument reduction:
 | |
|    *   Repeat x = x / 32, k += 5, until |x| < 0.1
 | |
|    *   exp(x) = exp(x / 2^k)^(2^k)
 | |
|    *
 | |
|    * Previously, the argument was initially reduced by
 | |
|    * exp(x) = exp(r) * 10^k  where r = x - k * ln10, k = floor(x / ln10)
 | |
|    * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was
 | |
|    * found to be slower than just dividing repeatedly by 32 as above.
 | |
|    *
 | |
|    * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324)
 | |
|    *
 | |
|    *  exp(x) is non-terminating for any finite, non-zero x.
 | |
|    *
 | |
|    */
 | |
|   function exp(x, sd) {
 | |
|     var denominator, guard, pow, sum, t, wpr,
 | |
|       i = 0,
 | |
|       k = 0,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision;
 | |
| 
 | |
|     if (getBase10Exponent(x) > 16) throw Error(exponentOutOfRange + getBase10Exponent(x));
 | |
| 
 | |
|     // exp(0) = 1
 | |
|     if (!x.s) return new Ctor(ONE);
 | |
| 
 | |
|     if (sd == null) {
 | |
|       external = false;
 | |
|       wpr = pr;
 | |
|     } else {
 | |
|       wpr = sd;
 | |
|     }
 | |
| 
 | |
|     t = new Ctor(0.03125);
 | |
| 
 | |
|     while (x.abs().gte(0.1)) {
 | |
|       x = x.times(t);    // x = x / 2^5
 | |
|       k += 5;
 | |
|     }
 | |
| 
 | |
|     // Estimate the precision increase necessary to ensure the first 4 rounding digits are correct.
 | |
|     guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;
 | |
|     wpr += guard;
 | |
|     denominator = pow = sum = new Ctor(ONE);
 | |
|     Ctor.precision = wpr;
 | |
| 
 | |
|     for (;;) {
 | |
|       pow = round(pow.times(x), wpr);
 | |
|       denominator = denominator.times(++i);
 | |
|       t = sum.plus(divide(pow, denominator, wpr));
 | |
| 
 | |
|       if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
 | |
|         while (k--) sum = round(sum.times(sum), wpr);
 | |
|         Ctor.precision = pr;
 | |
|         return sd == null ? (external = true, round(sum, pr)) : sum;
 | |
|       }
 | |
| 
 | |
|       sum = t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Calculate the base 10 exponent from the base 1e7 exponent.
 | |
|   function getBase10Exponent(x) {
 | |
|     var e = x.e * LOG_BASE,
 | |
|       w = x.d[0];
 | |
| 
 | |
|     // Add the number of digits of the first word of the digits array.
 | |
|     for (; w >= 10; w /= 10) e++;
 | |
|     return e;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function getLn10(Ctor, sd, pr) {
 | |
| 
 | |
|     if (sd > Ctor.LN10.sd()) {
 | |
| 
 | |
| 
 | |
|       // Reset global state in case the exception is caught.
 | |
|       external = true;
 | |
|       if (pr) Ctor.precision = pr;
 | |
|       throw Error(decimalError + 'LN10 precision limit exceeded');
 | |
|     }
 | |
| 
 | |
|     return round(new Ctor(Ctor.LN10), sd);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function getZeroString(k) {
 | |
|     var zs = '';
 | |
|     for (; k--;) zs += '0';
 | |
|     return zs;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Return a new Decimal whose value is the natural logarithm of `x` truncated to `sd` significant
 | |
|    * digits.
 | |
|    *
 | |
|    *  ln(n) is non-terminating (n != 1)
 | |
|    *
 | |
|    */
 | |
|   function ln(y, sd) {
 | |
|     var c, c0, denominator, e, numerator, sum, t, wpr, x2,
 | |
|       n = 1,
 | |
|       guard = 10,
 | |
|       x = y,
 | |
|       xd = x.d,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision;
 | |
| 
 | |
|     // ln(-x) = NaN
 | |
|     // ln(0) = -Infinity
 | |
|     if (x.s < 1) throw Error(decimalError + (x.s ? 'NaN' : '-Infinity'));
 | |
| 
 | |
|     // ln(1) = 0
 | |
|     if (x.eq(ONE)) return new Ctor(0);
 | |
| 
 | |
|     if (sd == null) {
 | |
|       external = false;
 | |
|       wpr = pr;
 | |
|     } else {
 | |
|       wpr = sd;
 | |
|     }
 | |
| 
 | |
|     if (x.eq(10)) {
 | |
|       if (sd == null) external = true;
 | |
|       return getLn10(Ctor, wpr);
 | |
|     }
 | |
| 
 | |
|     wpr += guard;
 | |
|     Ctor.precision = wpr;
 | |
|     c = digitsToString(xd);
 | |
|     c0 = c.charAt(0);
 | |
|     e = getBase10Exponent(x);
 | |
| 
 | |
|     if (Math.abs(e) < 1.5e15) {
 | |
| 
 | |
|       // Argument reduction.
 | |
|       // The series converges faster the closer the argument is to 1, so using
 | |
|       // ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b
 | |
|       // multiply the argument by itself until the leading digits of the significand are 7, 8, 9,
 | |
|       // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can
 | |
|       // later be divided by this number, then separate out the power of 10 using
 | |
|       // ln(a*10^b) = ln(a) + b*ln(10).
 | |
| 
 | |
|       // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).
 | |
|       //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {
 | |
|       // max n is 6 (gives 0.7 - 1.3)
 | |
|       while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {
 | |
|         x = x.times(y);
 | |
|         c = digitsToString(x.d);
 | |
|         c0 = c.charAt(0);
 | |
|         n++;
 | |
|       }
 | |
| 
 | |
|       e = getBase10Exponent(x);
 | |
| 
 | |
|       if (c0 > 1) {
 | |
|         x = new Ctor('0.' + c);
 | |
|         e++;
 | |
|       } else {
 | |
|         x = new Ctor(c0 + '.' + c.slice(1));
 | |
|       }
 | |
|     } else {
 | |
| 
 | |
|       // The argument reduction method above may result in overflow if the argument y is a massive
 | |
|       // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this
 | |
|       // function using ln(x*10^e) = ln(x) + e*ln(10).
 | |
|       t = getLn10(Ctor, wpr + 2, pr).times(e + '');
 | |
|       x = ln(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t);
 | |
| 
 | |
|       Ctor.precision = pr;
 | |
|       return sd == null ? (external = true, round(x, pr)) : x;
 | |
|     }
 | |
| 
 | |
|     // x is reduced to a value near 1.
 | |
| 
 | |
|     // Taylor series.
 | |
|     // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
 | |
|     // where x = (y - 1)/(y + 1)    (|x| < 1)
 | |
|     sum = numerator = x = divide(x.minus(ONE), x.plus(ONE), wpr);
 | |
|     x2 = round(x.times(x), wpr);
 | |
|     denominator = 3;
 | |
| 
 | |
|     for (;;) {
 | |
|       numerator = round(numerator.times(x2), wpr);
 | |
|       t = sum.plus(divide(numerator, new Ctor(denominator), wpr));
 | |
| 
 | |
|       if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) {
 | |
|         sum = sum.times(2);
 | |
| 
 | |
|         // Reverse the argument reduction.
 | |
|         if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + ''));
 | |
|         sum = divide(sum, new Ctor(n), wpr);
 | |
| 
 | |
|         Ctor.precision = pr;
 | |
|         return sd == null ? (external = true, round(sum, pr)) : sum;
 | |
|       }
 | |
| 
 | |
|       sum = t;
 | |
|       denominator += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Parse the value of a new Decimal `x` from string `str`.
 | |
|    */
 | |
|   function parseDecimal(x, str) {
 | |
|     var e, i, len;
 | |
| 
 | |
|     // Decimal point?
 | |
|     if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
 | |
| 
 | |
|     // Exponential form?
 | |
|     if ((i = str.search(/e/i)) > 0) {
 | |
| 
 | |
|       // Determine exponent.
 | |
|       if (e < 0) e = i;
 | |
|       e += +str.slice(i + 1);
 | |
|       str = str.substring(0, i);
 | |
|     } else if (e < 0) {
 | |
| 
 | |
|       // Integer.
 | |
|       e = str.length;
 | |
|     }
 | |
| 
 | |
|     // Determine leading zeros.
 | |
|     for (i = 0; str.charCodeAt(i) === 48;) ++i;
 | |
| 
 | |
|     // Determine trailing zeros.
 | |
|     for (len = str.length; str.charCodeAt(len - 1) === 48;) --len;
 | |
|     str = str.slice(i, len);
 | |
| 
 | |
|     if (str) {
 | |
|       len -= i;
 | |
|       e = e - i - 1;
 | |
|       x.e = mathfloor(e / LOG_BASE);
 | |
|       x.d = [];
 | |
| 
 | |
|       // Transform base
 | |
| 
 | |
|       // e is the base 10 exponent.
 | |
|       // i is where to slice str to get the first word of the digits array.
 | |
|       i = (e + 1) % LOG_BASE;
 | |
|       if (e < 0) i += LOG_BASE;
 | |
| 
 | |
|       if (i < len) {
 | |
|         if (i) x.d.push(+str.slice(0, i));
 | |
|         for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE));
 | |
|         str = str.slice(i);
 | |
|         i = LOG_BASE - str.length;
 | |
|       } else {
 | |
|         i -= len;
 | |
|       }
 | |
| 
 | |
|       for (; i--;) str += '0';
 | |
|       x.d.push(+str);
 | |
| 
 | |
|       if (external && (x.e > MAX_E || x.e < -MAX_E)) throw Error(exponentOutOfRange + e);
 | |
|     } else {
 | |
| 
 | |
|       // Zero.
 | |
|       x.s = 0;
 | |
|       x.e = 0;
 | |
|       x.d = [0];
 | |
|     }
 | |
| 
 | |
|     return x;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Round `x` to `sd` significant digits, using rounding mode `rm` if present (truncate otherwise).
 | |
|    */
 | |
|    function round(x, sd, rm) {
 | |
|     var i, j, k, n, rd, doRound, w, xdi,
 | |
|       xd = x.d;
 | |
| 
 | |
|     // rd: the rounding digit, i.e. the digit after the digit that may be rounded up.
 | |
|     // w: the word of xd which contains the rounding digit, a base 1e7 number.
 | |
|     // xdi: the index of w within xd.
 | |
|     // n: the number of digits of w.
 | |
|     // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if
 | |
|     // they had leading zeros)
 | |
|     // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero).
 | |
| 
 | |
|     // Get the length of the first word of the digits array xd.
 | |
|     for (n = 1, k = xd[0]; k >= 10; k /= 10) n++;
 | |
|     i = sd - n;
 | |
| 
 | |
|     // Is the rounding digit in the first word of xd?
 | |
|     if (i < 0) {
 | |
|       i += LOG_BASE;
 | |
|       j = sd;
 | |
|       w = xd[xdi = 0];
 | |
|     } else {
 | |
|       xdi = Math.ceil((i + 1) / LOG_BASE);
 | |
|       k = xd.length;
 | |
|       if (xdi >= k) return x;
 | |
|       w = k = xd[xdi];
 | |
| 
 | |
|       // Get the number of digits of w.
 | |
|       for (n = 1; k >= 10; k /= 10) n++;
 | |
| 
 | |
|       // Get the index of rd within w.
 | |
|       i %= LOG_BASE;
 | |
| 
 | |
|       // Get the index of rd within w, adjusted for leading zeros.
 | |
|       // The number of leading zeros of w is given by LOG_BASE - n.
 | |
|       j = i - LOG_BASE + n;
 | |
|     }
 | |
| 
 | |
|     if (rm !== void 0) {
 | |
|       k = mathpow(10, n - j - 1);
 | |
| 
 | |
|       // Get the rounding digit at index j of w.
 | |
|       rd = w / k % 10 | 0;
 | |
| 
 | |
|       // Are there any non-zero digits after the rounding digit?
 | |
|       doRound = sd < 0 || xd[xdi + 1] !== void 0 || w % k;
 | |
| 
 | |
|       // The expression `w % mathpow(10, n - j - 1)` returns all the digits of w to the right of the
 | |
|       // digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression will give
 | |
|       // 714.
 | |
| 
 | |
|       doRound = rm < 4
 | |
|         ? (rd || doRound) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
 | |
|         : rd > 5 || rd == 5 && (rm == 4 || doRound || rm == 6 &&
 | |
| 
 | |
|           // Check whether the digit to the left of the rounding digit is odd.
 | |
|           ((i > 0 ? j > 0 ? w / mathpow(10, n - j) : 0 : xd[xdi - 1]) % 10) & 1 ||
 | |
|             rm == (x.s < 0 ? 8 : 7));
 | |
|     }
 | |
| 
 | |
|     if (sd < 1 || !xd[0]) {
 | |
|       if (doRound) {
 | |
|         k = getBase10Exponent(x);
 | |
|         xd.length = 1;
 | |
| 
 | |
|         // Convert sd to decimal places.
 | |
|         sd = sd - k - 1;
 | |
| 
 | |
|         // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 | |
|         xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);
 | |
|         x.e = mathfloor(-sd / LOG_BASE) || 0;
 | |
|       } else {
 | |
|         xd.length = 1;
 | |
| 
 | |
|         // Zero.
 | |
|         xd[0] = x.e = x.s = 0;
 | |
|       }
 | |
| 
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|     // Remove excess digits.
 | |
|     if (i == 0) {
 | |
|       xd.length = xdi;
 | |
|       k = 1;
 | |
|       xdi--;
 | |
|     } else {
 | |
|       xd.length = xdi + 1;
 | |
|       k = mathpow(10, LOG_BASE - i);
 | |
| 
 | |
|       // E.g. 56700 becomes 56000 if 7 is the rounding digit.
 | |
|       // j > 0 means i > number of leading zeros of w.
 | |
|       xd[xdi] = j > 0 ? (w / mathpow(10, n - j) % mathpow(10, j) | 0) * k : 0;
 | |
|     }
 | |
| 
 | |
|     if (doRound) {
 | |
|       for (;;) {
 | |
| 
 | |
|         // Is the digit to be rounded up in the first word of xd?
 | |
|         if (xdi == 0) {
 | |
|           if ((xd[0] += k) == BASE) {
 | |
|             xd[0] = 1;
 | |
|             ++x.e;
 | |
|           }
 | |
| 
 | |
|           break;
 | |
|         } else {
 | |
|           xd[xdi] += k;
 | |
|           if (xd[xdi] != BASE) break;
 | |
|           xd[xdi--] = 0;
 | |
|           k = 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Remove trailing zeros.
 | |
|     for (i = xd.length; xd[--i] === 0;) xd.pop();
 | |
| 
 | |
|     if (external && (x.e > MAX_E || x.e < -MAX_E)) {
 | |
|       throw Error(exponentOutOfRange + getBase10Exponent(x));
 | |
|     }
 | |
| 
 | |
|     return x;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function subtract(x, y) {
 | |
|     var d, e, i, j, k, len, xd, xe, xLTy, yd,
 | |
|       Ctor = x.constructor,
 | |
|       pr = Ctor.precision;
 | |
| 
 | |
|     // Return y negated if x is zero.
 | |
|     // Return x if y is zero and x is non-zero.
 | |
|     if (!x.s || !y.s) {
 | |
|       if (y.s) y.s = -y.s;
 | |
|       else y = new Ctor(x);
 | |
|       return external ? round(y, pr) : y;
 | |
|     }
 | |
| 
 | |
|     xd = x.d;
 | |
|     yd = y.d;
 | |
| 
 | |
|     // x and y are non-zero numbers with the same sign.
 | |
| 
 | |
|     e = y.e;
 | |
|     xe = x.e;
 | |
|     xd = xd.slice();
 | |
|     k = xe - e;
 | |
| 
 | |
|     // If exponents differ...
 | |
|     if (k) {
 | |
|       xLTy = k < 0;
 | |
| 
 | |
|       if (xLTy) {
 | |
|         d = xd;
 | |
|         k = -k;
 | |
|         len = yd.length;
 | |
|       } else {
 | |
|         d = yd;
 | |
|         e = xe;
 | |
|         len = xd.length;
 | |
|       }
 | |
| 
 | |
|       // Numbers with massively different exponents would result in a very high number of zeros
 | |
|       // needing to be prepended, but this can be avoided while still ensuring correct rounding by
 | |
|       // limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.
 | |
|       i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;
 | |
| 
 | |
|       if (k > i) {
 | |
|         k = i;
 | |
|         d.length = 1;
 | |
|       }
 | |
| 
 | |
|       // Prepend zeros to equalise exponents.
 | |
|       d.reverse();
 | |
|       for (i = k; i--;) d.push(0);
 | |
|       d.reverse();
 | |
| 
 | |
|     // Base 1e7 exponents equal.
 | |
|     } else {
 | |
| 
 | |
|       // Check digits to determine which is the bigger number.
 | |
| 
 | |
|       i = xd.length;
 | |
|       len = yd.length;
 | |
|       xLTy = i < len;
 | |
|       if (xLTy) len = i;
 | |
| 
 | |
|       for (i = 0; i < len; i++) {
 | |
|         if (xd[i] != yd[i]) {
 | |
|           xLTy = xd[i] < yd[i];
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       k = 0;
 | |
|     }
 | |
| 
 | |
|     if (xLTy) {
 | |
|       d = xd;
 | |
|       xd = yd;
 | |
|       yd = d;
 | |
|       y.s = -y.s;
 | |
|     }
 | |
| 
 | |
|     len = xd.length;
 | |
| 
 | |
|     // Append zeros to xd if shorter.
 | |
|     // Don't add zeros to yd if shorter as subtraction only needs to start at yd length.
 | |
|     for (i = yd.length - len; i > 0; --i) xd[len++] = 0;
 | |
| 
 | |
|     // Subtract yd from xd.
 | |
|     for (i = yd.length; i > k;) {
 | |
|       if (xd[--i] < yd[i]) {
 | |
|         for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;
 | |
|         --xd[j];
 | |
|         xd[i] += BASE;
 | |
|       }
 | |
| 
 | |
|       xd[i] -= yd[i];
 | |
|     }
 | |
| 
 | |
|     // Remove trailing zeros.
 | |
|     for (; xd[--len] === 0;) xd.pop();
 | |
| 
 | |
|     // Remove leading zeros and adjust exponent accordingly.
 | |
|     for (; xd[0] === 0; xd.shift()) --e;
 | |
| 
 | |
|     // Zero?
 | |
|     if (!xd[0]) return new Ctor(0);
 | |
| 
 | |
|     y.d = xd;
 | |
|     y.e = e;
 | |
| 
 | |
|     //return external && xd.length >= pr / LOG_BASE ? round(y, pr) : y;
 | |
|     return external ? round(y, pr) : y;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   function toString(x, isExp, sd) {
 | |
|     var k,
 | |
|       e = getBase10Exponent(x),
 | |
|       str = digitsToString(x.d),
 | |
|       len = str.length;
 | |
| 
 | |
|     if (isExp) {
 | |
|       if (sd && (k = sd - len) > 0) {
 | |
|         str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k);
 | |
|       } else if (len > 1) {
 | |
|         str = str.charAt(0) + '.' + str.slice(1);
 | |
|       }
 | |
| 
 | |
|       str = str + (e < 0 ? 'e' : 'e+') + e;
 | |
|     } else if (e < 0) {
 | |
|       str = '0.' + getZeroString(-e - 1) + str;
 | |
|       if (sd && (k = sd - len) > 0) str += getZeroString(k);
 | |
|     } else if (e >= len) {
 | |
|       str += getZeroString(e + 1 - len);
 | |
|       if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k);
 | |
|     } else {
 | |
|       if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k);
 | |
|       if (sd && (k = sd - len) > 0) {
 | |
|         if (e + 1 === len) str += '.';
 | |
|         str += getZeroString(k);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return x.s < 0 ? '-' + str : str;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Does not strip trailing zeros.
 | |
|   function truncate(arr, len) {
 | |
|     if (arr.length > len) {
 | |
|       arr.length = len;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Decimal methods
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    *  clone
 | |
|    *  config/set
 | |
|    */
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Create and return a Decimal constructor with the same configuration properties as this Decimal
 | |
|    * constructor.
 | |
|    *
 | |
|    */
 | |
|   function clone(obj) {
 | |
|     var i, p, ps;
 | |
| 
 | |
|     /*
 | |
|      * The Decimal constructor and exported function.
 | |
|      * Return a new Decimal instance.
 | |
|      *
 | |
|      * value {number|string|Decimal} A numeric value.
 | |
|      *
 | |
|      */
 | |
|     function Decimal(value) {
 | |
|       var x = this;
 | |
| 
 | |
|       // Decimal called without new.
 | |
|       if (!(x instanceof Decimal)) return new Decimal(value);
 | |
| 
 | |
|       // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor
 | |
|       // which points to Object.
 | |
|       x.constructor = Decimal;
 | |
| 
 | |
|       // Duplicate.
 | |
|       if (value instanceof Decimal) {
 | |
|         x.s = value.s;
 | |
|         x.e = value.e;
 | |
|         x.d = (value = value.d) ? value.slice() : value;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (typeof value === 'number') {
 | |
| 
 | |
|         // Reject Infinity/NaN.
 | |
|         if (value * 0 !== 0) {
 | |
|           throw Error(invalidArgument + value);
 | |
|         }
 | |
| 
 | |
|         if (value > 0) {
 | |
|           x.s = 1;
 | |
|         } else if (value < 0) {
 | |
|           value = -value;
 | |
|           x.s = -1;
 | |
|         } else {
 | |
|           x.s = 0;
 | |
|           x.e = 0;
 | |
|           x.d = [0];
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // Fast path for small integers.
 | |
|         if (value === ~~value && value < 1e7) {
 | |
|           x.e = 0;
 | |
|           x.d = [value];
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         return parseDecimal(x, value.toString());
 | |
|       } else if (typeof value !== 'string') {
 | |
|         throw Error(invalidArgument + value);
 | |
|       }
 | |
| 
 | |
|       // Minus sign?
 | |
|       if (value.charCodeAt(0) === 45) {
 | |
|         value = value.slice(1);
 | |
|         x.s = -1;
 | |
|       } else {
 | |
|         x.s = 1;
 | |
|       }
 | |
| 
 | |
|       if (isDecimal.test(value)) parseDecimal(x, value);
 | |
|       else throw Error(invalidArgument + value);
 | |
|     }
 | |
| 
 | |
|     Decimal.prototype = P;
 | |
| 
 | |
|     Decimal.ROUND_UP = 0;
 | |
|     Decimal.ROUND_DOWN = 1;
 | |
|     Decimal.ROUND_CEIL = 2;
 | |
|     Decimal.ROUND_FLOOR = 3;
 | |
|     Decimal.ROUND_HALF_UP = 4;
 | |
|     Decimal.ROUND_HALF_DOWN = 5;
 | |
|     Decimal.ROUND_HALF_EVEN = 6;
 | |
|     Decimal.ROUND_HALF_CEIL = 7;
 | |
|     Decimal.ROUND_HALF_FLOOR = 8;
 | |
| 
 | |
|     Decimal.clone = clone;
 | |
|     Decimal.config = Decimal.set = config;
 | |
| 
 | |
|     if (obj === void 0) obj = {};
 | |
|     if (obj) {
 | |
|       ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'LN10'];
 | |
|       for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p];
 | |
|     }
 | |
| 
 | |
|     Decimal.config(obj);
 | |
| 
 | |
|     return Decimal;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /*
 | |
|    * Configure global settings for a Decimal constructor.
 | |
|    *
 | |
|    * `obj` is an object with one or more of the following properties,
 | |
|    *
 | |
|    *   precision  {number}
 | |
|    *   rounding   {number}
 | |
|    *   toExpNeg   {number}
 | |
|    *   toExpPos   {number}
 | |
|    *
 | |
|    * E.g. Decimal.config({ precision: 20, rounding: 4 })
 | |
|    *
 | |
|    */
 | |
|   function config(obj) {
 | |
|     if (!obj || typeof obj !== 'object') {
 | |
|       throw Error(decimalError + 'Object expected');
 | |
|     }
 | |
|     var i, p, v,
 | |
|       ps = [
 | |
|         'precision', 1, MAX_DIGITS,
 | |
|         'rounding', 0, 8,
 | |
|         'toExpNeg', -1 / 0, 0,
 | |
|         'toExpPos', 0, 1 / 0
 | |
|       ];
 | |
| 
 | |
|     for (i = 0; i < ps.length; i += 3) {
 | |
|       if ((v = obj[p = ps[i]]) !== void 0) {
 | |
|         if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v;
 | |
|         else throw Error(invalidArgument + p + ': ' + v);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((v = obj[p = 'LN10']) !== void 0) {
 | |
|         if (v == Math.LN10) this[p] = new this(v);
 | |
|         else throw Error(invalidArgument + p + ': ' + v);
 | |
|     }
 | |
| 
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Create and configure initial Decimal constructor.
 | |
|   Decimal = clone(Decimal);
 | |
| 
 | |
|   Decimal['default'] = Decimal.Decimal = Decimal;
 | |
| 
 | |
|   // Internal constant.
 | |
|   ONE = new Decimal(1);
 | |
| 
 | |
| 
 | |
|   // Export.
 | |
| 
 | |
| 
 | |
|   // AMD.
 | |
|   if (typeof define == 'function' && define.amd) {
 | |
|     define(function () {
 | |
|       return Decimal;
 | |
|     });
 | |
| 
 | |
|   // Node and other environments that support module.exports.
 | |
|   } else if (typeof module != 'undefined' && module.exports) {
 | |
|     module.exports = Decimal;
 | |
| 
 | |
|     // Browser.
 | |
|   } else {
 | |
|     if (!globalScope) {
 | |
|       globalScope = typeof self != 'undefined' && self && self.self == self
 | |
|         ? self : Function('return this')();
 | |
|     }
 | |
| 
 | |
|     globalScope.Decimal = Decimal;
 | |
|   }
 | |
| })(this);
 |