611 lines
17 KiB
Markdown
611 lines
17 KiB
Markdown
# BACKBEAT Tempo Guide: Beat Timing and Performance Recommendations
|
||
|
||
This guide provides comprehensive recommendations for choosing optimal tempo settings, implementing beat processing, and achieving optimal performance in BACKBEAT-enabled CHORUS 2.0.0 services.
|
||
|
||
## Understanding BACKBEAT Tempo
|
||
|
||
### Tempo Basics
|
||
|
||
BACKBEAT tempo is measured in **Beats Per Minute (BPM)**, similar to musical tempo:
|
||
|
||
- **1 BPM** = 60-second beats (**default**, good for batch processing and recovery windows)
|
||
- **2 BPM** = 30-second beats (good for most services)
|
||
- **4 BPM** = 15-second beats (good for responsive services)
|
||
- **60 BPM** = 1-second beats (good for high-frequency operations)
|
||
|
||
### Beat Structure
|
||
|
||
Each beat consists of three equal phases:
|
||
|
||
```
|
||
Beat Duration = 60 / TempoBPM seconds
|
||
Phase Duration = Beat Duration / 3
|
||
|
||
┌─────────────┬─────────────┬─────────────┐
|
||
│ PLAN │ EXECUTE │ REVIEW │
|
||
│ Phase 1 │ Phase 2 │ Phase 3 │
|
||
└─────────────┴─────────────┴─────────────┘
|
||
│←────────── Beat Duration ──────────────→│
|
||
```
|
||
|
||
### Tempo Ranges and Use Cases
|
||
|
||
| Tempo Range | Beat Duration | Use Cases | Examples |
|
||
|-------------|---------------|-----------|----------|
|
||
| 0.1 - 0.5 BPM | 2-10 minutes | Large batch jobs, ETL | Data warehouse loads, ML training |
|
||
| 0.5 - 2 BPM | 30s - 2 minutes | Standard operations | API services, web apps |
|
||
| 2 - 10 BPM | 6-30 seconds | Responsive services | Real-time dashboards, monitoring |
|
||
| 10 - 60 BPM | 1-6 seconds | High-frequency | Trading systems, IoT data processing |
|
||
| 60+ BPM | <1 second | Ultra-high-frequency | Hardware control, real-time gaming |
|
||
|
||
## Choosing the Right Tempo
|
||
|
||
### Workload Analysis
|
||
|
||
Before selecting tempo, analyze your workload characteristics:
|
||
|
||
1. **Task Duration**: How long do typical operations take?
|
||
2. **Coordination Needs**: How often do services need to synchronize?
|
||
3. **Resource Requirements**: How much CPU/memory/I/O does work consume?
|
||
4. **Latency Tolerance**: How quickly must the system respond to changes?
|
||
5. **Error Recovery**: How quickly should the system detect and recover from failures?
|
||
|
||
### Tempo Selection Guidelines
|
||
|
||
#### Rule 1: Task Duration Constraint
|
||
```
|
||
Recommended Tempo ≤ 60 / (Average Task Duration × 3)
|
||
```
|
||
|
||
**Example**: If tasks take 5 seconds on average:
|
||
- Maximum recommended tempo = 60 / (5 × 3) = 4 BPM
|
||
- Use 2-4 BPM for safe operation
|
||
|
||
#### Rule 2: Coordination Frequency
|
||
```
|
||
Coordination Tempo = 60 / Desired Sync Interval
|
||
```
|
||
|
||
**Example**: If services should sync every 2 minutes:
|
||
- Recommended tempo = 60 / 120 = 0.5 BPM
|
||
|
||
#### Rule 3: Resource Utilization
|
||
```
|
||
Sustainable Tempo = 60 / (Task Duration + Recovery Time)
|
||
```
|
||
|
||
**Example**: 10s tasks with 5s recovery time:
|
||
- Maximum sustainable tempo = 60 / (10 + 5) = 4 BPM
|
||
|
||
### Common Tempo Patterns
|
||
|
||
#### Development/Testing: 0.1-0.5 BPM
|
||
```json
|
||
{
|
||
"tempo_bpm": 0.2,
|
||
"beat_duration": "5 minutes",
|
||
"use_case": "Development and debugging",
|
||
"advantages": ["Easy to observe", "Time to investigate issues"],
|
||
"disadvantages": ["Slow feedback", "Not production realistic"]
|
||
}
|
||
```
|
||
|
||
#### Standard Services: 1-4 BPM
|
||
```json
|
||
{
|
||
"tempo_bpm": 2.0,
|
||
"beat_duration": "30 seconds",
|
||
"use_case": "Most production services",
|
||
"advantages": ["Good balance", "Reasonable coordination", "Error recovery"],
|
||
"disadvantages": ["May be slow for real-time needs"]
|
||
}
|
||
```
|
||
|
||
#### Responsive Applications: 4-20 BPM
|
||
```json
|
||
{
|
||
"tempo_bpm": 10.0,
|
||
"beat_duration": "6 seconds",
|
||
"use_case": "Interactive applications",
|
||
"advantages": ["Quick response", "Fast error detection"],
|
||
"disadvantages": ["Higher overhead", "More network traffic"]
|
||
}
|
||
```
|
||
|
||
#### High-Frequency Systems: 20+ BPM
|
||
```json
|
||
{
|
||
"tempo_bpm": 60.0,
|
||
"beat_duration": "1 second",
|
||
"use_case": "Real-time trading, IoT",
|
||
"advantages": ["Ultra-responsive", "Immediate coordination"],
|
||
"disadvantages": ["High resource usage", "Network intensive"]
|
||
}
|
||
```
|
||
|
||
## Implementation Guidelines
|
||
|
||
### Beat Processing Architecture
|
||
|
||
#### Single-Threaded Processing
|
||
Best for low-medium tempo (≤10 BPM):
|
||
|
||
```go
|
||
type BeatProcessor struct {
|
||
currentBeat int64
|
||
phase string
|
||
workQueue chan Task
|
||
}
|
||
|
||
func (p *BeatProcessor) ProcessBeat(frame BeatFrame) {
|
||
// Update state
|
||
p.currentBeat = frame.BeatIndex
|
||
p.phase = frame.Phase
|
||
|
||
// Process phase synchronously
|
||
switch frame.Phase {
|
||
case "plan":
|
||
p.planPhase(frame)
|
||
case "execute":
|
||
p.executePhase(frame)
|
||
case "review":
|
||
p.reviewPhase(frame)
|
||
}
|
||
|
||
// Report status before deadline
|
||
p.reportStatus(frame.BeatIndex, "completed")
|
||
}
|
||
```
|
||
|
||
#### Pipelined Processing
|
||
Best for high tempo (>10 BPM):
|
||
|
||
```go
|
||
type PipelinedProcessor struct {
|
||
planQueue chan BeatFrame
|
||
executeQueue chan BeatFrame
|
||
reviewQueue chan BeatFrame
|
||
}
|
||
|
||
func (p *PipelinedProcessor) Start() {
|
||
// Separate goroutines for each phase
|
||
go p.planWorker()
|
||
go p.executeWorker()
|
||
go p.reviewWorker()
|
||
}
|
||
|
||
func (p *PipelinedProcessor) ProcessBeat(frame BeatFrame) {
|
||
switch frame.Phase {
|
||
case "plan":
|
||
p.planQueue <- frame
|
||
case "execute":
|
||
p.executeQueue <- frame
|
||
case "review":
|
||
p.reviewQueue <- frame
|
||
}
|
||
}
|
||
```
|
||
|
||
### Timing Implementation
|
||
|
||
#### Deadline Management
|
||
|
||
```go
|
||
func (p *BeatProcessor) executeWithDeadline(frame BeatFrame, work func() error) error {
|
||
// Calculate remaining time
|
||
remainingTime := time.Until(frame.DeadlineAt)
|
||
|
||
// Create timeout context
|
||
ctx, cancel := context.WithTimeout(context.Background(), remainingTime)
|
||
defer cancel()
|
||
|
||
// Execute with timeout
|
||
done := make(chan error, 1)
|
||
go func() {
|
||
done <- work()
|
||
}()
|
||
|
||
select {
|
||
case err := <-done:
|
||
return err
|
||
case <-ctx.Done():
|
||
return fmt.Errorf("work timed out after %v", remainingTime)
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Adaptive Processing
|
||
|
||
```go
|
||
type AdaptiveProcessor struct {
|
||
processingTimes []time.Duration
|
||
targetUtilization float64 // 0.8 = use 80% of available time
|
||
}
|
||
|
||
func (p *AdaptiveProcessor) shouldProcessWork(frame BeatFrame) bool {
|
||
// Calculate phase time available
|
||
phaseTime := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
|
||
|
||
// Estimate processing time based on history
|
||
avgProcessingTime := p.calculateAverage()
|
||
|
||
// Only process if we have enough time
|
||
requiredTime := time.Duration(float64(avgProcessingTime) / p.targetUtilization)
|
||
return phaseTime >= requiredTime
|
||
}
|
||
```
|
||
|
||
### Performance Optimization
|
||
|
||
#### Batch Processing within Beats
|
||
|
||
```go
|
||
func (p *BeatProcessor) executePhase(frame BeatFrame) error {
|
||
// Calculate optimal batch size based on tempo
|
||
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
|
||
targetTime := time.Duration(float64(phaseDuration) * 0.8) // Use 80% of time
|
||
|
||
// Process work in batches
|
||
batchSize := p.calculateOptimalBatchSize(targetTime)
|
||
|
||
for p.hasWork() && time.Until(frame.DeadlineAt) > time.Second {
|
||
batch := p.getWorkBatch(batchSize)
|
||
if err := p.processBatch(batch); err != nil {
|
||
return err
|
||
}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
```
|
||
|
||
#### Caching and Pre-computation
|
||
|
||
```go
|
||
type SmartProcessor struct {
|
||
cache map[string]interface{}
|
||
precomputed map[int64]interface{} // Keyed by beat index
|
||
}
|
||
|
||
func (p *SmartProcessor) planPhase(frame BeatFrame) {
|
||
// Pre-compute work for future beats during plan phase
|
||
nextBeat := frame.BeatIndex + 1
|
||
if _, exists := p.precomputed[nextBeat]; !exists {
|
||
p.precomputed[nextBeat] = p.precomputeWork(nextBeat)
|
||
}
|
||
|
||
// Cache frequently accessed data
|
||
p.cacheRelevantData(frame)
|
||
}
|
||
|
||
func (p *SmartProcessor) executePhase(frame BeatFrame) {
|
||
// Use pre-computed results if available
|
||
if precomputed, exists := p.precomputed[frame.BeatIndex]; exists {
|
||
return p.usePrecomputedWork(precomputed)
|
||
}
|
||
|
||
// Fall back to real-time computation
|
||
return p.computeWork(frame)
|
||
}
|
||
```
|
||
|
||
## Performance Monitoring
|
||
|
||
### Key Metrics
|
||
|
||
Track these metrics for tempo optimization:
|
||
|
||
```go
|
||
type TempoMetrics struct {
|
||
// Timing metrics
|
||
BeatProcessingLatency time.Duration // How long beats take to process
|
||
PhaseCompletionRate float64 // % of phases completed on time
|
||
DeadlineMissRate float64 // % of deadlines missed
|
||
|
||
// Resource metrics
|
||
CPUUtilization float64 // CPU usage during beats
|
||
MemoryUtilization float64 // Memory usage
|
||
NetworkBandwidth int64 // Bytes/sec for BACKBEAT messages
|
||
|
||
// Throughput metrics
|
||
TasksPerBeat int // Work completed per beat
|
||
BeatsPerSecond float64 // Effective beat processing rate
|
||
TempoDriftMS float64 // How far behind/ahead we're running
|
||
}
|
||
```
|
||
|
||
### Performance Alerts
|
||
|
||
```go
|
||
func (m *TempoMetrics) checkAlerts() []Alert {
|
||
var alerts []Alert
|
||
|
||
// Beat processing taking too long
|
||
if m.BeatProcessingLatency > m.phaseDuration() * 0.9 {
|
||
alerts = append(alerts, Alert{
|
||
Level: "warning",
|
||
Message: "Beat processing approaching deadline",
|
||
Recommendation: "Consider reducing tempo or optimizing processing",
|
||
})
|
||
}
|
||
|
||
// Missing too many deadlines
|
||
if m.DeadlineMissRate > 0.05 { // 5%
|
||
alerts = append(alerts, Alert{
|
||
Level: "critical",
|
||
Message: "High deadline miss rate",
|
||
Recommendation: "Reduce tempo immediately or scale resources",
|
||
})
|
||
}
|
||
|
||
// Resource exhaustion
|
||
if m.CPUUtilization > 0.9 {
|
||
alerts = append(alerts, Alert{
|
||
Level: "warning",
|
||
Message: "High CPU utilization",
|
||
Recommendation: "Scale up or reduce workload per beat",
|
||
})
|
||
}
|
||
|
||
return alerts
|
||
}
|
||
```
|
||
|
||
### Adaptive Tempo Adjustment
|
||
|
||
```go
|
||
type TempoController struct {
|
||
currentTempo float64
|
||
targetLatency time.Duration
|
||
adjustmentRate float64 // How aggressively to adjust
|
||
}
|
||
|
||
func (tc *TempoController) adjustTempo(metrics TempoMetrics) float64 {
|
||
// Calculate desired tempo based on performance
|
||
if metrics.DeadlineMissRate > 0.02 { // 2% miss rate
|
||
// Slow down
|
||
tc.currentTempo *= (1.0 - tc.adjustmentRate)
|
||
} else if metrics.PhaseCompletionRate > 0.95 && metrics.CPUUtilization < 0.7 {
|
||
// Speed up
|
||
tc.currentTempo *= (1.0 + tc.adjustmentRate)
|
||
}
|
||
|
||
// Apply constraints
|
||
tc.currentTempo = math.Max(0.1, tc.currentTempo) // Minimum 0.1 BPM
|
||
tc.currentTempo = math.Min(1000, tc.currentTempo) // Maximum 1000 BPM
|
||
|
||
return tc.currentTempo
|
||
}
|
||
```
|
||
|
||
## Load Testing and Capacity Planning
|
||
|
||
### Beat Load Testing
|
||
|
||
```go
|
||
func TestBeatProcessingUnderLoad(t *testing.T) {
|
||
processor := NewBeatProcessor()
|
||
tempo := 10.0 // 10 BPM = 6-second beats
|
||
beatInterval := time.Duration(60/tempo) * time.Second
|
||
|
||
// Simulate sustained load
|
||
for i := 0; i < 1000; i++ {
|
||
frame := generateBeatFrame(i, tempo)
|
||
|
||
start := time.Now()
|
||
err := processor.ProcessBeat(frame)
|
||
duration := time.Since(start)
|
||
|
||
// Verify processing completed within phase duration
|
||
phaseDuration := beatInterval / 3
|
||
assert.Less(t, duration, phaseDuration)
|
||
assert.NoError(t, err)
|
||
|
||
// Wait for next beat
|
||
time.Sleep(beatInterval)
|
||
}
|
||
}
|
||
```
|
||
|
||
### Capacity Planning
|
||
|
||
```go
|
||
type CapacityPlanner struct {
|
||
maxTempo float64
|
||
resourceLimits ResourceLimits
|
||
taskCharacteristics TaskProfile
|
||
}
|
||
|
||
func (cp *CapacityPlanner) calculateMaxTempo() float64 {
|
||
// Based on CPU capacity
|
||
cpuConstrainedTempo := 60.0 / (cp.taskCharacteristics.CPUTime * 3)
|
||
|
||
// Based on memory capacity
|
||
memConstrainedTempo := cp.resourceLimits.Memory / cp.taskCharacteristics.MemoryPerBeat
|
||
|
||
// Based on I/O capacity
|
||
ioConstrainedTempo := cp.resourceLimits.IOPS / cp.taskCharacteristics.IOPerBeat
|
||
|
||
// Take the minimum (most restrictive constraint)
|
||
return math.Min(cpuConstrainedTempo, math.Min(memConstrainedTempo, ioConstrainedTempo))
|
||
}
|
||
```
|
||
|
||
## Common Patterns and Anti-Patterns
|
||
|
||
### ✅ Good Patterns
|
||
|
||
#### Progressive Backoff
|
||
```go
|
||
func (p *Processor) handleOverload() {
|
||
if p.metrics.DeadlineMissRate > 0.1 {
|
||
// Temporarily reduce work per beat
|
||
p.workPerBeat *= 0.8
|
||
log.Warn("Reducing work per beat due to overload")
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Graceful Degradation
|
||
```go
|
||
func (p *Processor) executePhase(frame BeatFrame) error {
|
||
timeRemaining := time.Until(frame.DeadlineAt)
|
||
|
||
if timeRemaining < p.minimumTime {
|
||
// Skip non-essential work
|
||
return p.executeEssentialOnly(frame)
|
||
}
|
||
|
||
return p.executeFullWorkload(frame)
|
||
}
|
||
```
|
||
|
||
#### Work Prioritization
|
||
```go
|
||
func (p *Processor) planPhase(frame BeatFrame) {
|
||
// Sort work by priority and deadline
|
||
work := p.getAvailableWork()
|
||
sort.Sort(ByPriorityAndDeadline(work))
|
||
|
||
// Plan only what can be completed in time
|
||
plannedWork := p.selectWorkForTempo(work, frame.TempoBPM)
|
||
p.scheduleWork(plannedWork)
|
||
}
|
||
```
|
||
|
||
### ❌ Anti-Patterns
|
||
|
||
#### Blocking I/O in Beat Processing
|
||
```go
|
||
// DON'T: Synchronous I/O can cause deadline misses
|
||
func badExecutePhase(frame BeatFrame) error {
|
||
data := fetchFromDatabase() // Blocking call!
|
||
return processData(data)
|
||
}
|
||
|
||
// DO: Use async I/O with timeouts
|
||
func goodExecutePhase(frame BeatFrame) error {
|
||
ctx, cancel := context.WithDeadline(context.Background(), frame.DeadlineAt)
|
||
defer cancel()
|
||
|
||
data, err := fetchFromDatabaseAsync(ctx)
|
||
if err != nil {
|
||
return err
|
||
}
|
||
return processData(data)
|
||
}
|
||
```
|
||
|
||
#### Ignoring Tempo Changes
|
||
```go
|
||
// DON'T: Assume tempo is constant
|
||
func badBeatHandler(frame BeatFrame) {
|
||
// Hard-coded timing assumptions
|
||
time.Sleep(10 * time.Second) // Fails if tempo > 6 BPM!
|
||
}
|
||
|
||
// DO: Adapt to current tempo
|
||
func goodBeatHandler(frame BeatFrame) {
|
||
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
|
||
maxWorkTime := time.Duration(float64(phaseDuration) * 0.8)
|
||
|
||
// Adapt work to available time
|
||
ctx, cancel := context.WithTimeout(context.Background(), maxWorkTime)
|
||
defer cancel()
|
||
|
||
doWork(ctx)
|
||
}
|
||
```
|
||
|
||
#### Unbounded Work Queues
|
||
```go
|
||
// DON'T: Let work queues grow infinitely
|
||
type BadProcessor struct {
|
||
workQueue chan Task // Unbounded queue
|
||
}
|
||
|
||
// DO: Use bounded queues with backpressure
|
||
type GoodProcessor struct {
|
||
workQueue chan Task // Bounded queue
|
||
metrics *TempoMetrics
|
||
}
|
||
|
||
func (p *GoodProcessor) addWork(task Task) error {
|
||
select {
|
||
case p.workQueue <- task:
|
||
return nil
|
||
default:
|
||
p.metrics.WorkRejectedCount++
|
||
return ErrQueueFull
|
||
}
|
||
}
|
||
```
|
||
|
||
## Troubleshooting Performance Issues
|
||
|
||
### Diagnostic Checklist
|
||
|
||
1. **Beat Processing Time**: Are beats completing within phase deadlines?
|
||
2. **Resource Utilization**: Is CPU/memory/I/O being over-utilized?
|
||
3. **Network Latency**: Are BACKBEAT messages arriving late?
|
||
4. **Work Distribution**: Is work evenly distributed across beats?
|
||
5. **Error Rates**: Are errors causing processing delays?
|
||
|
||
### Performance Tuning Steps
|
||
|
||
1. **Measure Current Performance**
|
||
```bash
|
||
# Monitor beat processing metrics
|
||
kubectl logs deployment/my-service | grep "beat_processing_time"
|
||
|
||
# Check resource utilization
|
||
kubectl top pods
|
||
```
|
||
|
||
2. **Identify Bottlenecks**
|
||
```go
|
||
func profileBeatProcessing(frame BeatFrame) {
|
||
defer func(start time.Time) {
|
||
log.Infof("Beat %d phase %s took %v",
|
||
frame.BeatIndex, frame.Phase, time.Since(start))
|
||
}(time.Now())
|
||
|
||
// Your beat processing code here
|
||
}
|
||
```
|
||
|
||
3. **Optimize Critical Paths**
|
||
- Cache frequently accessed data
|
||
- Use connection pooling
|
||
- Implement circuit breakers
|
||
- Add request timeouts
|
||
|
||
4. **Scale Resources**
|
||
- Increase CPU/memory limits
|
||
- Add more replicas
|
||
- Use faster storage
|
||
- Optimize network configuration
|
||
|
||
5. **Adjust Tempo**
|
||
- Reduce tempo if overloaded
|
||
- Increase tempo if under-utilized
|
||
- Consider tempo auto-scaling
|
||
|
||
## Future Enhancements
|
||
|
||
### Planned Features
|
||
|
||
1. **Dynamic Tempo Scaling**: Automatic tempo adjustment based on load
|
||
2. **Beat Prediction**: ML-based prediction of optimal tempo
|
||
3. **Resource-Aware Scheduling**: Beat scheduling based on resource availability
|
||
4. **Cross-Service Tempo Negotiation**: Services negotiate optimal cluster tempo
|
||
|
||
### Experimental Features
|
||
|
||
1. **Hierarchical Beats**: Different tempo for different service types
|
||
2. **Beat Priorities**: Critical beats get processing preference
|
||
3. **Temporal Load Balancing**: Distribute work across beat phases
|
||
4. **Beat Replay**: Replay missed beats during low-load periods
|
||
|
||
Understanding and implementing these tempo guidelines will ensure your BACKBEAT-enabled services operate efficiently and reliably across the full range of CHORUS 2.0.0 workloads.
|