Files
BACKBEAT/contracts/docs/tempo-guide.md
2025-10-17 08:56:25 +11:00

611 lines
17 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# BACKBEAT Tempo Guide: Beat Timing and Performance Recommendations
This guide provides comprehensive recommendations for choosing optimal tempo settings, implementing beat processing, and achieving optimal performance in BACKBEAT-enabled CHORUS 2.0.0 services.
## Understanding BACKBEAT Tempo
### Tempo Basics
BACKBEAT tempo is measured in **Beats Per Minute (BPM)**, similar to musical tempo:
- **1 BPM** = 60-second beats (**default**, good for batch processing and recovery windows)
- **2 BPM** = 30-second beats (good for most services)
- **4 BPM** = 15-second beats (good for responsive services)
- **60 BPM** = 1-second beats (good for high-frequency operations)
### Beat Structure
Each beat consists of three equal phases:
```
Beat Duration = 60 / TempoBPM seconds
Phase Duration = Beat Duration / 3
┌─────────────┬─────────────┬─────────────┐
│ PLAN │ EXECUTE │ REVIEW │
│ Phase 1 │ Phase 2 │ Phase 3 │
└─────────────┴─────────────┴─────────────┘
│←────────── Beat Duration ──────────────→│
```
### Tempo Ranges and Use Cases
| Tempo Range | Beat Duration | Use Cases | Examples |
|-------------|---------------|-----------|----------|
| 0.1 - 0.5 BPM | 2-10 minutes | Large batch jobs, ETL | Data warehouse loads, ML training |
| 0.5 - 2 BPM | 30s - 2 minutes | Standard operations | API services, web apps |
| 2 - 10 BPM | 6-30 seconds | Responsive services | Real-time dashboards, monitoring |
| 10 - 60 BPM | 1-6 seconds | High-frequency | Trading systems, IoT data processing |
| 60+ BPM | <1 second | Ultra-high-frequency | Hardware control, real-time gaming |
## Choosing the Right Tempo
### Workload Analysis
Before selecting tempo, analyze your workload characteristics:
1. **Task Duration**: How long do typical operations take?
2. **Coordination Needs**: How often do services need to synchronize?
3. **Resource Requirements**: How much CPU/memory/I/O does work consume?
4. **Latency Tolerance**: How quickly must the system respond to changes?
5. **Error Recovery**: How quickly should the system detect and recover from failures?
### Tempo Selection Guidelines
#### Rule 1: Task Duration Constraint
```
Recommended Tempo ≤ 60 / (Average Task Duration × 3)
```
**Example**: If tasks take 5 seconds on average:
- Maximum recommended tempo = 60 / (5 × 3) = 4 BPM
- Use 2-4 BPM for safe operation
#### Rule 2: Coordination Frequency
```
Coordination Tempo = 60 / Desired Sync Interval
```
**Example**: If services should sync every 2 minutes:
- Recommended tempo = 60 / 120 = 0.5 BPM
#### Rule 3: Resource Utilization
```
Sustainable Tempo = 60 / (Task Duration + Recovery Time)
```
**Example**: 10s tasks with 5s recovery time:
- Maximum sustainable tempo = 60 / (10 + 5) = 4 BPM
### Common Tempo Patterns
#### Development/Testing: 0.1-0.5 BPM
```json
{
"tempo_bpm": 0.2,
"beat_duration": "5 minutes",
"use_case": "Development and debugging",
"advantages": ["Easy to observe", "Time to investigate issues"],
"disadvantages": ["Slow feedback", "Not production realistic"]
}
```
#### Standard Services: 1-4 BPM
```json
{
"tempo_bpm": 2.0,
"beat_duration": "30 seconds",
"use_case": "Most production services",
"advantages": ["Good balance", "Reasonable coordination", "Error recovery"],
"disadvantages": ["May be slow for real-time needs"]
}
```
#### Responsive Applications: 4-20 BPM
```json
{
"tempo_bpm": 10.0,
"beat_duration": "6 seconds",
"use_case": "Interactive applications",
"advantages": ["Quick response", "Fast error detection"],
"disadvantages": ["Higher overhead", "More network traffic"]
}
```
#### High-Frequency Systems: 20+ BPM
```json
{
"tempo_bpm": 60.0,
"beat_duration": "1 second",
"use_case": "Real-time trading, IoT",
"advantages": ["Ultra-responsive", "Immediate coordination"],
"disadvantages": ["High resource usage", "Network intensive"]
}
```
## Implementation Guidelines
### Beat Processing Architecture
#### Single-Threaded Processing
Best for low-medium tempo (≤10 BPM):
```go
type BeatProcessor struct {
currentBeat int64
phase string
workQueue chan Task
}
func (p *BeatProcessor) ProcessBeat(frame BeatFrame) {
// Update state
p.currentBeat = frame.BeatIndex
p.phase = frame.Phase
// Process phase synchronously
switch frame.Phase {
case "plan":
p.planPhase(frame)
case "execute":
p.executePhase(frame)
case "review":
p.reviewPhase(frame)
}
// Report status before deadline
p.reportStatus(frame.BeatIndex, "completed")
}
```
#### Pipelined Processing
Best for high tempo (>10 BPM):
```go
type PipelinedProcessor struct {
planQueue chan BeatFrame
executeQueue chan BeatFrame
reviewQueue chan BeatFrame
}
func (p *PipelinedProcessor) Start() {
// Separate goroutines for each phase
go p.planWorker()
go p.executeWorker()
go p.reviewWorker()
}
func (p *PipelinedProcessor) ProcessBeat(frame BeatFrame) {
switch frame.Phase {
case "plan":
p.planQueue <- frame
case "execute":
p.executeQueue <- frame
case "review":
p.reviewQueue <- frame
}
}
```
### Timing Implementation
#### Deadline Management
```go
func (p *BeatProcessor) executeWithDeadline(frame BeatFrame, work func() error) error {
// Calculate remaining time
remainingTime := time.Until(frame.DeadlineAt)
// Create timeout context
ctx, cancel := context.WithTimeout(context.Background(), remainingTime)
defer cancel()
// Execute with timeout
done := make(chan error, 1)
go func() {
done <- work()
}()
select {
case err := <-done:
return err
case <-ctx.Done():
return fmt.Errorf("work timed out after %v", remainingTime)
}
}
```
#### Adaptive Processing
```go
type AdaptiveProcessor struct {
processingTimes []time.Duration
targetUtilization float64 // 0.8 = use 80% of available time
}
func (p *AdaptiveProcessor) shouldProcessWork(frame BeatFrame) bool {
// Calculate phase time available
phaseTime := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
// Estimate processing time based on history
avgProcessingTime := p.calculateAverage()
// Only process if we have enough time
requiredTime := time.Duration(float64(avgProcessingTime) / p.targetUtilization)
return phaseTime >= requiredTime
}
```
### Performance Optimization
#### Batch Processing within Beats
```go
func (p *BeatProcessor) executePhase(frame BeatFrame) error {
// Calculate optimal batch size based on tempo
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
targetTime := time.Duration(float64(phaseDuration) * 0.8) // Use 80% of time
// Process work in batches
batchSize := p.calculateOptimalBatchSize(targetTime)
for p.hasWork() && time.Until(frame.DeadlineAt) > time.Second {
batch := p.getWorkBatch(batchSize)
if err := p.processBatch(batch); err != nil {
return err
}
}
return nil
}
```
#### Caching and Pre-computation
```go
type SmartProcessor struct {
cache map[string]interface{}
precomputed map[int64]interface{} // Keyed by beat index
}
func (p *SmartProcessor) planPhase(frame BeatFrame) {
// Pre-compute work for future beats during plan phase
nextBeat := frame.BeatIndex + 1
if _, exists := p.precomputed[nextBeat]; !exists {
p.precomputed[nextBeat] = p.precomputeWork(nextBeat)
}
// Cache frequently accessed data
p.cacheRelevantData(frame)
}
func (p *SmartProcessor) executePhase(frame BeatFrame) {
// Use pre-computed results if available
if precomputed, exists := p.precomputed[frame.BeatIndex]; exists {
return p.usePrecomputedWork(precomputed)
}
// Fall back to real-time computation
return p.computeWork(frame)
}
```
## Performance Monitoring
### Key Metrics
Track these metrics for tempo optimization:
```go
type TempoMetrics struct {
// Timing metrics
BeatProcessingLatency time.Duration // How long beats take to process
PhaseCompletionRate float64 // % of phases completed on time
DeadlineMissRate float64 // % of deadlines missed
// Resource metrics
CPUUtilization float64 // CPU usage during beats
MemoryUtilization float64 // Memory usage
NetworkBandwidth int64 // Bytes/sec for BACKBEAT messages
// Throughput metrics
TasksPerBeat int // Work completed per beat
BeatsPerSecond float64 // Effective beat processing rate
TempoDriftMS float64 // How far behind/ahead we're running
}
```
### Performance Alerts
```go
func (m *TempoMetrics) checkAlerts() []Alert {
var alerts []Alert
// Beat processing taking too long
if m.BeatProcessingLatency > m.phaseDuration() * 0.9 {
alerts = append(alerts, Alert{
Level: "warning",
Message: "Beat processing approaching deadline",
Recommendation: "Consider reducing tempo or optimizing processing",
})
}
// Missing too many deadlines
if m.DeadlineMissRate > 0.05 { // 5%
alerts = append(alerts, Alert{
Level: "critical",
Message: "High deadline miss rate",
Recommendation: "Reduce tempo immediately or scale resources",
})
}
// Resource exhaustion
if m.CPUUtilization > 0.9 {
alerts = append(alerts, Alert{
Level: "warning",
Message: "High CPU utilization",
Recommendation: "Scale up or reduce workload per beat",
})
}
return alerts
}
```
### Adaptive Tempo Adjustment
```go
type TempoController struct {
currentTempo float64
targetLatency time.Duration
adjustmentRate float64 // How aggressively to adjust
}
func (tc *TempoController) adjustTempo(metrics TempoMetrics) float64 {
// Calculate desired tempo based on performance
if metrics.DeadlineMissRate > 0.02 { // 2% miss rate
// Slow down
tc.currentTempo *= (1.0 - tc.adjustmentRate)
} else if metrics.PhaseCompletionRate > 0.95 && metrics.CPUUtilization < 0.7 {
// Speed up
tc.currentTempo *= (1.0 + tc.adjustmentRate)
}
// Apply constraints
tc.currentTempo = math.Max(0.1, tc.currentTempo) // Minimum 0.1 BPM
tc.currentTempo = math.Min(1000, tc.currentTempo) // Maximum 1000 BPM
return tc.currentTempo
}
```
## Load Testing and Capacity Planning
### Beat Load Testing
```go
func TestBeatProcessingUnderLoad(t *testing.T) {
processor := NewBeatProcessor()
tempo := 10.0 // 10 BPM = 6-second beats
beatInterval := time.Duration(60/tempo) * time.Second
// Simulate sustained load
for i := 0; i < 1000; i++ {
frame := generateBeatFrame(i, tempo)
start := time.Now()
err := processor.ProcessBeat(frame)
duration := time.Since(start)
// Verify processing completed within phase duration
phaseDuration := beatInterval / 3
assert.Less(t, duration, phaseDuration)
assert.NoError(t, err)
// Wait for next beat
time.Sleep(beatInterval)
}
}
```
### Capacity Planning
```go
type CapacityPlanner struct {
maxTempo float64
resourceLimits ResourceLimits
taskCharacteristics TaskProfile
}
func (cp *CapacityPlanner) calculateMaxTempo() float64 {
// Based on CPU capacity
cpuConstrainedTempo := 60.0 / (cp.taskCharacteristics.CPUTime * 3)
// Based on memory capacity
memConstrainedTempo := cp.resourceLimits.Memory / cp.taskCharacteristics.MemoryPerBeat
// Based on I/O capacity
ioConstrainedTempo := cp.resourceLimits.IOPS / cp.taskCharacteristics.IOPerBeat
// Take the minimum (most restrictive constraint)
return math.Min(cpuConstrainedTempo, math.Min(memConstrainedTempo, ioConstrainedTempo))
}
```
## Common Patterns and Anti-Patterns
### ✅ Good Patterns
#### Progressive Backoff
```go
func (p *Processor) handleOverload() {
if p.metrics.DeadlineMissRate > 0.1 {
// Temporarily reduce work per beat
p.workPerBeat *= 0.8
log.Warn("Reducing work per beat due to overload")
}
}
```
#### Graceful Degradation
```go
func (p *Processor) executePhase(frame BeatFrame) error {
timeRemaining := time.Until(frame.DeadlineAt)
if timeRemaining < p.minimumTime {
// Skip non-essential work
return p.executeEssentialOnly(frame)
}
return p.executeFullWorkload(frame)
}
```
#### Work Prioritization
```go
func (p *Processor) planPhase(frame BeatFrame) {
// Sort work by priority and deadline
work := p.getAvailableWork()
sort.Sort(ByPriorityAndDeadline(work))
// Plan only what can be completed in time
plannedWork := p.selectWorkForTempo(work, frame.TempoBPM)
p.scheduleWork(plannedWork)
}
```
### ❌ Anti-Patterns
#### Blocking I/O in Beat Processing
```go
// DON'T: Synchronous I/O can cause deadline misses
func badExecutePhase(frame BeatFrame) error {
data := fetchFromDatabase() // Blocking call!
return processData(data)
}
// DO: Use async I/O with timeouts
func goodExecutePhase(frame BeatFrame) error {
ctx, cancel := context.WithDeadline(context.Background(), frame.DeadlineAt)
defer cancel()
data, err := fetchFromDatabaseAsync(ctx)
if err != nil {
return err
}
return processData(data)
}
```
#### Ignoring Tempo Changes
```go
// DON'T: Assume tempo is constant
func badBeatHandler(frame BeatFrame) {
// Hard-coded timing assumptions
time.Sleep(10 * time.Second) // Fails if tempo > 6 BPM!
}
// DO: Adapt to current tempo
func goodBeatHandler(frame BeatFrame) {
phaseDuration := time.Duration(60/frame.TempoBPM*1000/3) * time.Millisecond
maxWorkTime := time.Duration(float64(phaseDuration) * 0.8)
// Adapt work to available time
ctx, cancel := context.WithTimeout(context.Background(), maxWorkTime)
defer cancel()
doWork(ctx)
}
```
#### Unbounded Work Queues
```go
// DON'T: Let work queues grow infinitely
type BadProcessor struct {
workQueue chan Task // Unbounded queue
}
// DO: Use bounded queues with backpressure
type GoodProcessor struct {
workQueue chan Task // Bounded queue
metrics *TempoMetrics
}
func (p *GoodProcessor) addWork(task Task) error {
select {
case p.workQueue <- task:
return nil
default:
p.metrics.WorkRejectedCount++
return ErrQueueFull
}
}
```
## Troubleshooting Performance Issues
### Diagnostic Checklist
1. **Beat Processing Time**: Are beats completing within phase deadlines?
2. **Resource Utilization**: Is CPU/memory/I/O being over-utilized?
3. **Network Latency**: Are BACKBEAT messages arriving late?
4. **Work Distribution**: Is work evenly distributed across beats?
5. **Error Rates**: Are errors causing processing delays?
### Performance Tuning Steps
1. **Measure Current Performance**
```bash
# Monitor beat processing metrics
kubectl logs deployment/my-service | grep "beat_processing_time"
# Check resource utilization
kubectl top pods
```
2. **Identify Bottlenecks**
```go
func profileBeatProcessing(frame BeatFrame) {
defer func(start time.Time) {
log.Infof("Beat %d phase %s took %v",
frame.BeatIndex, frame.Phase, time.Since(start))
}(time.Now())
// Your beat processing code here
}
```
3. **Optimize Critical Paths**
- Cache frequently accessed data
- Use connection pooling
- Implement circuit breakers
- Add request timeouts
4. **Scale Resources**
- Increase CPU/memory limits
- Add more replicas
- Use faster storage
- Optimize network configuration
5. **Adjust Tempo**
- Reduce tempo if overloaded
- Increase tempo if under-utilized
- Consider tempo auto-scaling
## Future Enhancements
### Planned Features
1. **Dynamic Tempo Scaling**: Automatic tempo adjustment based on load
2. **Beat Prediction**: ML-based prediction of optimal tempo
3. **Resource-Aware Scheduling**: Beat scheduling based on resource availability
4. **Cross-Service Tempo Negotiation**: Services negotiate optimal cluster tempo
### Experimental Features
1. **Hierarchical Beats**: Different tempo for different service types
2. **Beat Priorities**: Critical beats get processing preference
3. **Temporal Load Balancing**: Distribute work across beat phases
4. **Beat Replay**: Replay missed beats during low-load periods
Understanding and implementing these tempo guidelines will ensure your BACKBEAT-enabled services operate efficiently and reliably across the full range of CHORUS 2.0.0 workloads.