docs: Add comprehensive implementation roadmap to task execution engine plan

- Add detailed phase-by-phase implementation strategy
- Define semantic versioning and Git workflow standards
- Specify quality gates and testing requirements
- Include risk mitigation and deployment strategies
- Provide clear deliverables and timelines for each phase
This commit is contained in:
anthonyrawlins
2025-09-25 10:40:30 +10:00
parent 14b5125c12
commit 9fc9a2e3a2

View File

@@ -0,0 +1,435 @@
# CHORUS Task Execution Engine Development Plan
## Overview
This plan outlines the development of a comprehensive task execution engine for CHORUS agents, replacing the current mock implementation with a fully functional system that can execute real work according to agent roles and specializations.
## Current State Analysis
### What's Implemented ✅
- **Task Coordinator Framework** (`coordinator/task_coordinator.go`): Full task management lifecycle with role-based assignment, collaboration requests, and HMMM integration
- **Agent Role System**: Role announcements, capability broadcasting, and expertise matching
- **P2P Infrastructure**: Nodes can discover each other and communicate via pubsub
- **Health Monitoring**: Comprehensive health checks and graceful shutdown
### Critical Gaps Identified ❌
- **Task Execution Engine**: `executeTask()` only has a 10-second sleep simulation - no actual work performed
- **Repository Integration**: Mock providers only - no real GitHub/GitLab task pulling
- **Agent-to-Task Binding**: Task discovery relies on WHOOSH but agents don't connect to real work
- **Role-Based Execution**: Agents announce roles but don't execute tasks according to their specialization
- **AI Integration**: No LLM/reasoning integration for task completion
## Architecture Requirements
### Model and Provider Abstraction
The execution engine must support multiple AI model providers and execution environments:
**Model Provider Types:**
- **Local Ollama**: Default for most roles (llama3.1:8b, codellama, etc.)
- **OpenAI API**: For specialized models (chatgpt-5, gpt-4o, etc.)
- **ResetData API**: For testing and fallback (llama3.1:8b via LaaS)
- **Custom Endpoints**: Support for other provider APIs
**Role-Model Mapping:**
- Each role has a default model configuration
- Specialized roles may require specific models/providers
- Model selection transparent to execution logic
- Support for MCP calls and tool usage regardless of provider
### Execution Environment Abstraction
Tasks must execute in secure, isolated environments while maintaining transparency:
**Sandbox Types:**
- **Docker Containers**: Isolated execution environment per task
- **Specialized VMs**: For tasks requiring full OS isolation
- **Process Sandboxing**: Lightweight isolation for simple tasks
**Transparency Requirements:**
- Model perceives it's working on a local repository
- Development tools available within sandbox
- File system operations work normally from model's perspective
- Network access controlled but transparent
- Resource limits enforced but invisible
## Development Plan
### Phase 1: Model Provider Abstraction Layer
#### 1.1 Create Provider Interface
```go
// pkg/ai/provider.go
type ModelProvider interface {
ExecuteTask(ctx context.Context, request *TaskRequest) (*TaskResponse, error)
SupportsMCP() bool
SupportsTools() bool
GetCapabilities() []string
}
```
#### 1.2 Implement Provider Types
- **OllamaProvider**: Local model execution
- **OpenAIProvider**: OpenAI API integration
- **ResetDataProvider**: ResetData LaaS integration
- **ProviderFactory**: Creates appropriate provider based on model config
#### 1.3 Role-Model Configuration
```yaml
# Config structure for role-model mapping
roles:
developer:
default_model: "codellama:13b"
provider: "ollama"
fallback_model: "llama3.1:8b"
fallback_provider: "resetdata"
architect:
default_model: "gpt-4o"
provider: "openai"
fallback_model: "llama3.1:8b"
fallback_provider: "ollama"
```
### Phase 2: Execution Environment Abstraction
#### 2.1 Create Sandbox Interface
```go
// pkg/execution/sandbox.go
type ExecutionSandbox interface {
Initialize(ctx context.Context, config *SandboxConfig) error
ExecuteCommand(ctx context.Context, cmd *Command) (*CommandResult, error)
CopyFiles(ctx context.Context, source, dest string) error
Cleanup() error
}
```
#### 2.2 Implement Sandbox Types
- **DockerSandbox**: Container-based isolation
- **VMSandbox**: Full VM isolation for sensitive tasks
- **ProcessSandbox**: Lightweight process-based isolation
#### 2.3 Repository Mounting
- Clone repository into sandbox environment
- Mount as local filesystem from model's perspective
- Implement secure file I/O operations
- Handle git operations within sandbox
### Phase 3: Core Task Execution Engine
#### 3.1 Replace Mock Implementation
Replace the current simulation in `coordinator/task_coordinator.go:314`:
```go
// Current mock implementation
time.Sleep(10 * time.Second) // Simulate work
// New implementation
result, err := tc.executionEngine.ExecuteTask(ctx, &TaskExecutionRequest{
Task: activeTask.Task,
Agent: tc.agentInfo,
Sandbox: sandboxConfig,
ModelProvider: providerConfig,
})
```
#### 3.2 Task Execution Strategies
Create role-specific execution patterns:
- **DeveloperStrategy**: Code implementation, bug fixes, feature development
- **ReviewerStrategy**: Code review, quality analysis, test coverage assessment
- **ArchitectStrategy**: System design, technical decision making
- **TesterStrategy**: Test creation, validation, quality assurance
#### 3.3 Execution Workflow
1. **Task Analysis**: Parse task requirements and complexity
2. **Environment Setup**: Initialize appropriate sandbox
3. **Repository Preparation**: Clone and mount repository
4. **Model Selection**: Choose appropriate model/provider
5. **Task Execution**: Run role-specific execution strategy
6. **Result Validation**: Verify output quality and completeness
7. **Cleanup**: Teardown sandbox and collect artifacts
### Phase 4: Repository Provider Implementation
#### 4.1 Real Repository Integration
Replace `MockTaskProvider` with actual implementations:
- **GiteaProvider**: Integration with GITEA API
- **GitHubProvider**: GitHub API integration
- **GitLabProvider**: GitLab API integration
#### 4.2 Task Lifecycle Management
- Task claiming and status updates
- Progress reporting back to repositories
- Artifact attachment (patches, documentation, etc.)
- Automated PR/MR creation for completed tasks
### Phase 5: AI Integration and Tool Support
#### 5.1 LLM Integration
- Context-aware task analysis based on repository content
- Code generation and problem-solving capabilities
- Natural language processing for task descriptions
- Multi-step reasoning for complex tasks
#### 5.2 Tool Integration
- MCP server connectivity within sandbox
- Development tool access (compilers, linters, formatters)
- Testing framework integration
- Documentation generation tools
#### 5.3 Quality Assurance
- Automated testing of generated code
- Code quality metrics and analysis
- Security vulnerability scanning
- Performance impact assessment
### Phase 6: Testing and Validation
#### 6.1 Unit Testing
- Provider abstraction layer testing
- Sandbox isolation verification
- Task execution strategy validation
- Error handling and recovery testing
#### 6.2 Integration Testing
- End-to-end task execution workflows
- Agent-to-WHOOSH communication testing
- Multi-provider failover scenarios
- Concurrent task execution testing
#### 6.3 Security Testing
- Sandbox escape prevention
- Resource limit enforcement
- Network isolation validation
- Secrets and credential protection
### Phase 7: Production Deployment
#### 7.1 Configuration Management
- Environment-specific model configurations
- Sandbox resource limit definitions
- Provider API key management
- Monitoring and logging setup
#### 7.2 Monitoring and Observability
- Task execution metrics and dashboards
- Performance monitoring and alerting
- Resource utilization tracking
- Error rate and success metrics
## Implementation Priorities
### Critical Path (Week 1-2)
1. Model Provider Abstraction Layer
2. Basic Docker Sandbox Implementation
3. Replace Mock Task Execution
4. Role-Based Execution Strategies
### High Priority (Week 3-4)
5. Real Repository Provider Implementation
6. AI Integration with Ollama/OpenAI
7. MCP Tool Integration
8. Basic Testing Framework
### Medium Priority (Week 5-6)
9. Advanced Sandbox Types (VM, Process)
10. Quality Assurance Pipeline
11. Comprehensive Testing Suite
12. Performance Optimization
### Future Enhancements
- Multi-language model support
- Advanced reasoning capabilities
- Distributed task execution
- Machine learning model fine-tuning
## Success Metrics
- **Task Completion Rate**: >90% of assigned tasks successfully completed
- **Code Quality**: Generated code passes all existing tests and linting
- **Security**: Zero sandbox escapes or security violations
- **Performance**: Task execution time within acceptable bounds
- **Reliability**: <5% execution failure rate due to engine issues
## Risk Mitigation
### Security Risks
- Sandbox escape Multiple isolation layers, security audits
- Credential exposure Secure credential management, rotation
- Resource exhaustion Resource limits, monitoring, auto-scaling
### Technical Risks
- Model provider outages Multi-provider failover, local fallbacks
- Execution failures Robust error handling, retry mechanisms
- Performance bottlenecks Profiling, optimization, horizontal scaling
### Integration Risks
- WHOOSH compatibility Extensive integration testing, versioning
- Repository provider changes Provider abstraction, API versioning
- Model compatibility Provider abstraction, capability detection
This comprehensive plan addresses the core limitation that CHORUS agents currently lack real task execution capabilities while building a robust, secure, and scalable execution engine suitable for production deployment.
## Implementation Roadmap
### Development Standards & Workflow
**Semantic Versioning Strategy:**
- **Patch (0.N.X)**: Bug fixes, small improvements, documentation updates
- **Minor (0.N.0)**: New features, phase completions, non-breaking changes
- **Major (N.0.0)**: Breaking changes, major architectural shifts
**Git Workflow:**
1. **Branch Creation**: `git checkout -b feature/phase-N-description`
2. **Development**: Implement with frequent commits using conventional commit format
3. **Testing**: Run full test suite with `make test` before PR
4. **Code Review**: Create PR with detailed description and test results
5. **Integration**: Squash merge to main after approval
6. **Release**: Tag with `git tag v0.N.0` and update Makefile version
**Quality Gates:**
Each phase must meet these criteria before merge:
- Unit tests with >80% coverage
- ✅ Integration tests for external dependencies
- ✅ Security review for new attack surfaces
- ✅ Performance benchmarks within acceptable bounds
- ✅ Documentation updates (code comments + README)
- ✅ Backward compatibility verification
### Phase-by-Phase Implementation
#### Phase 1: Model Provider Abstraction (v0.2.0)
**Branch:** `feature/phase-1-model-providers`
**Duration:** 3-5 days
**Deliverables:**
```
pkg/ai/
├── provider.go # Core provider interface & request/response types
├── ollama.go # Local Ollama model integration
├── openai.go # OpenAI API client wrapper
├── resetdata.go # ResetData LaaS integration
├── factory.go # Provider factory with auto-selection
└── provider_test.go # Comprehensive provider tests
configs/
└── models.yaml # Role-model mapping configuration
```
**Key Features:**
- Abstract AI providers behind unified interface
- Support multiple providers with automatic failover
- Configuration-driven model selection per agent role
- Proper error handling and retry logic
#### Phase 2: Execution Environment Abstraction (v0.3.0)
**Branch:** `feature/phase-2-execution-sandbox`
**Duration:** 5-7 days
**Deliverables:**
```
pkg/execution/
├── sandbox.go # Core sandbox interface & types
├── docker.go # Docker container implementation
├── security.go # Security policies & enforcement
├── resources.go # Resource monitoring & limits
└── sandbox_test.go # Sandbox security & isolation tests
```
**Key Features:**
- Docker-based task isolation with transparent repository access
- Resource limits (CPU, memory, network, disk) with monitoring
- Security boundary enforcement and escape prevention
- Clean teardown and artifact collection
#### Phase 3: Core Task Execution Engine (v0.4.0)
**Branch:** `feature/phase-3-task-execution`
**Duration:** 7-10 days
**Modified Files:**
- `coordinator/task_coordinator.go:314` - Replace mock with real execution
- `pkg/repository/types.go` - Extend interfaces for execution context
**New Files:**
```
pkg/strategies/
├── developer.go # Code implementation & bug fixes
├── reviewer.go # Code review & quality analysis
├── architect.go # System design & tech decisions
└── tester.go # Test creation & validation
pkg/engine/
├── executor.go # Main execution orchestrator
├── workflow.go # 7-step execution workflow
└── validation.go # Result quality verification
```
**Key Features:**
- Real task execution replacing 10-second sleep simulation
- Role-specific execution strategies with appropriate tooling
- Integration between AI providers, sandboxes, and task lifecycle
- Comprehensive result validation and quality metrics
#### Phase 4: Repository Provider Implementation (v0.5.0)
**Branch:** `feature/phase-4-real-providers`
**Duration:** 10-14 days
**Deliverables:**
```
pkg/providers/
├── gitea.go # Gitea API integration (primary)
├── github.go # GitHub API integration
├── gitlab.go # GitLab API integration
└── provider_test.go # API integration tests
```
**Key Features:**
- Replace MockTaskProvider with production implementations
- Task claiming, status updates, and progress reporting via APIs
- Automated PR/MR creation with proper branch management
- Repository-specific configuration and credential management
### Testing Strategy
**Unit Testing:**
- Each provider/sandbox implementation has dedicated test suite
- Mock external dependencies (APIs, Docker, etc.) for isolated testing
- Property-based testing for core interfaces
- Error condition and edge case coverage
**Integration Testing:**
- End-to-end task execution workflows
- Multi-provider failover scenarios
- Agent-to-WHOOSH communication validation
- Concurrent task execution under load
**Security Testing:**
- Sandbox escape prevention validation
- Resource exhaustion protection
- Network isolation verification
- Secrets and credential protection audits
### Deployment & Monitoring
**Configuration Management:**
- Environment-specific model configurations
- Sandbox resource limits per environment
- Provider API credentials via secure secret management
- Feature flags for gradual rollout
**Observability:**
- Task execution metrics (completion rate, duration, success/failure)
- Resource utilization tracking (CPU, memory, network per task)
- Error rate monitoring with alerting thresholds
- Performance dashboards for capacity planning
### Risk Mitigation
**Technical Risks:**
- **Provider Outages**: Multi-provider failover with health checks
- **Resource Exhaustion**: Strict limits with monitoring and auto-scaling
- **Execution Failures**: Retry mechanisms with exponential backoff
**Security Risks:**
- **Sandbox Escapes**: Multiple isolation layers and regular security audits
- **Credential Exposure**: Secure rotation and least-privilege access
- **Data Exfiltration**: Network isolation and egress monitoring
**Integration Risks:**
- **API Changes**: Provider abstraction with versioning support
- **Performance Degradation**: Comprehensive benchmarking at each phase
- **Compatibility Issues**: Extensive integration testing with existing systems