This commit implements Phase 2 of the CHORUS Task Execution Engine development plan, providing a comprehensive execution environment abstraction layer with Docker container sandboxing support. ## New Features ### Core Sandbox Interface - Comprehensive ExecutionSandbox interface with isolated task execution - Support for command execution, file I/O, environment management - Resource usage monitoring and sandbox lifecycle management - Standardized error handling with SandboxError types and categories ### Docker Container Sandbox Implementation - Full Docker API integration with secure container creation - Transparent repository mounting with configurable read/write access - Advanced security policies with capability dropping and privilege controls - Comprehensive resource limits (CPU, memory, disk, processes, file handles) - Support for tmpfs mounts, masked paths, and read-only bind mounts - Container lifecycle management with proper cleanup and health monitoring ### Security & Resource Management - Configurable security policies with SELinux, AppArmor, and Seccomp support - Fine-grained capability management with secure defaults - Network isolation options with configurable DNS and proxy settings - Resource monitoring with real-time CPU, memory, and network usage tracking - Comprehensive ulimits configuration for process and file handle limits ### Repository Integration - Seamless repository mounting from local paths to container workspaces - Git configuration support with user credentials and global settings - File inclusion/exclusion patterns for selective repository access - Configurable permissions and ownership for mounted repositories ### Testing Infrastructure - Comprehensive test suite with 60+ test cases covering all functionality - Docker integration tests with Alpine Linux containers (skipped in short mode) - Mock sandbox implementation for unit testing without Docker dependencies - Security policy validation tests with read-only filesystem enforcement - Resource usage monitoring and cleanup verification tests ## Technical Details ### Dependencies Added - github.com/docker/docker v28.4.0+incompatible - Docker API client - github.com/docker/go-connections v0.6.0 - Docker connection utilities - github.com/docker/go-units v0.5.0 - Docker units and formatting - Associated Docker API dependencies for complete container management ### Architecture - Interface-driven design enabling multiple sandbox implementations - Comprehensive configuration structures for all sandbox aspects - Resource usage tracking with detailed metrics collection - Error handling with retryable error classification - Proper cleanup and resource management throughout sandbox lifecycle ### Compatibility - Maintains backward compatibility with existing CHORUS architecture - Designed for future integration with Phase 3 Core Task Execution Engine - Extensible design supporting additional sandbox implementations (VM, process) This Phase 2 implementation provides the foundation for secure, isolated task execution that will be integrated with the AI model providers from Phase 1 in the upcoming Phase 3 development. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
1.4 KiB
Contributing to go.opentelemetry.io/auto/sdk
The go.opentelemetry.io/auto/sdk module is a purpose built OpenTelemetry SDK.
It is designed to be:
- An OpenTelemetry compliant SDK
- Instrumented by auto-instrumentation (serializable into OTLP JSON)
- Lightweight
- User-friendly
These design choices are listed in the order of their importance.
The primary design goal of this module is to be an OpenTelemetry SDK.
This means that it needs to implement the Go APIs found in go.opentelemetry.io/otel.
Having met the requirement of SDK compliance, this module needs to provide code that the go.opentelemetry.io/auto module can instrument.
The chosen approach to meet this goal is to ensure the telemetry from the SDK is serializable into JSON encoded OTLP.
This ensures then that the serialized form is compatible with other OpenTelemetry systems, and the auto-instrumentation can use these systems to deserialize any telemetry it is sent.
Outside of these first two goals, the intended use becomes relevant.
This package is intended to be used in the go.opentelemetry.io/otel global API as a default when the auto-instrumentation is running.
Because of this, this package needs to not add unnecessary dependencies to that API.
Ideally, it adds none.
It also needs to operate efficiently.
Finally, this module is designed to be user-friendly to Go development. It hides complexity in order to provide simpler APIs when the previous goals can all still be met.