- Add FUTURE_DEVELOPMENT.md with comprehensive v2 protocol specification - Add MCP integration design and implementation foundation - Add infrastructure and deployment configurations - Update system architecture for v2 evolution 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
1135 lines
31 KiB
Markdown
1135 lines
31 KiB
Markdown
# BZZZ v2 MCP Integration Design
|
|
## GPT-4 Agent Framework for Distributed P2P Collaboration
|
|
|
|
### Executive Summary
|
|
|
|
This document outlines the comprehensive Model Context Protocol (MCP) integration for BZZZ v2, enabling GPT-4 agents to operate as first-class citizens within the distributed P2P task coordination system. The integration provides a bridge between OpenAI's GPT-4 models and the existing libp2p-based BZZZ infrastructure, creating a hybrid human-AI collaboration environment.
|
|
|
|
---
|
|
|
|
## 1. MCP Server Architecture
|
|
|
|
### 1.1 Core MCP Server Design
|
|
|
|
```typescript
|
|
interface BzzzMcpServer {
|
|
// Protocol Operations
|
|
tools: {
|
|
bzzz_announce: ToolDefinition;
|
|
bzzz_lookup: ToolDefinition;
|
|
bzzz_get: ToolDefinition;
|
|
bzzz_post: ToolDefinition;
|
|
bzzz_thread: ToolDefinition;
|
|
bzzz_subscribe: ToolDefinition;
|
|
};
|
|
|
|
// Agent Management
|
|
agentLifecycle: AgentLifecycleManager;
|
|
conversationManager: ConversationManager;
|
|
costTracker: OpenAICostTracker;
|
|
|
|
// BZZZ Protocol Integration
|
|
p2pNode: P2PNodeInterface;
|
|
pubsubManager: PubSubManager;
|
|
hypercoreLogger: HypercoreLogger;
|
|
}
|
|
```
|
|
|
|
### 1.2 MCP Tool Registry
|
|
|
|
The MCP server exposes BZZZ protocol operations as standardized tools that GPT-4 agents can invoke:
|
|
|
|
#### Core Protocol Tools
|
|
|
|
**1. `bzzz_announce`** - Agent presence announcement
|
|
```json
|
|
{
|
|
"name": "bzzz_announce",
|
|
"description": "Announce agent presence and capabilities on the BZZZ network",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"agent_id": {"type": "string", "description": "Unique agent identifier"},
|
|
"role": {"type": "string", "description": "Agent role (architect, reviewer, etc.)"},
|
|
"capabilities": {"type": "array", "items": {"type": "string"}},
|
|
"specialization": {"type": "string"},
|
|
"max_tasks": {"type": "number", "default": 3}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**2. `bzzz_lookup`** - Semantic address discovery
|
|
```json
|
|
{
|
|
"name": "bzzz_lookup",
|
|
"description": "Discover agents and resources using semantic addressing",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"semantic_address": {
|
|
"type": "string",
|
|
"description": "Format: bzzz://agent:role@project:task/path"
|
|
},
|
|
"filter_criteria": {
|
|
"type": "object",
|
|
"properties": {
|
|
"expertise": {"type": "array"},
|
|
"availability": {"type": "boolean"},
|
|
"performance_threshold": {"type": "number"}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**3. `bzzz_get`** - Content retrieval from addresses
|
|
```json
|
|
{
|
|
"name": "bzzz_get",
|
|
"description": "Retrieve content from BZZZ semantic addresses",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"address": {"type": "string"},
|
|
"include_metadata": {"type": "boolean", "default": true},
|
|
"max_history": {"type": "number", "default": 10}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**4. `bzzz_post`** - Event/message posting
|
|
```json
|
|
{
|
|
"name": "bzzz_post",
|
|
"description": "Post events or messages to BZZZ addresses",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"target_address": {"type": "string"},
|
|
"message_type": {"type": "string"},
|
|
"content": {"type": "object"},
|
|
"priority": {"type": "string", "enum": ["low", "medium", "high", "urgent"]},
|
|
"thread_id": {"type": "string", "optional": true}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**5. `bzzz_thread`** - Conversation management
|
|
```json
|
|
{
|
|
"name": "bzzz_thread",
|
|
"description": "Manage threaded conversations between agents",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"action": {"type": "string", "enum": ["create", "join", "leave", "list", "summarize"]},
|
|
"thread_id": {"type": "string", "optional": true},
|
|
"participants": {"type": "array", "items": {"type": "string"}},
|
|
"topic": {"type": "string", "optional": true}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
**6. `bzzz_subscribe`** - Real-time event subscription
|
|
```json
|
|
{
|
|
"name": "bzzz_subscribe",
|
|
"description": "Subscribe to real-time events from BZZZ network",
|
|
"inputSchema": {
|
|
"type": "object",
|
|
"properties": {
|
|
"event_types": {"type": "array", "items": {"type": "string"}},
|
|
"filter_address": {"type": "string", "optional": true},
|
|
"callback_webhook": {"type": "string", "optional": true}
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 2. GPT-4 Agent Framework
|
|
|
|
### 2.1 Agent Specialization Definitions
|
|
|
|
#### Core Agent Types
|
|
|
|
**1. Architect Agent** (`bzzz://architect@*`)
|
|
```json
|
|
{
|
|
"role": "architect",
|
|
"capabilities": [
|
|
"system_design",
|
|
"architecture_review",
|
|
"technology_selection",
|
|
"scalability_analysis"
|
|
],
|
|
"reasoning_prompts": {
|
|
"system": "You are a senior software architect specializing in distributed systems...",
|
|
"task_analysis": "Analyze this task from an architectural perspective...",
|
|
"collaboration": "Coordinate with other architects and provide technical guidance..."
|
|
},
|
|
"interaction_patterns": {
|
|
"peer_architects": "collaborative_review",
|
|
"developers": "guidance_provision",
|
|
"reviewers": "design_validation"
|
|
}
|
|
}
|
|
```
|
|
|
|
**2. Code Reviewer Agent** (`bzzz://reviewer@*`)
|
|
```json
|
|
{
|
|
"role": "reviewer",
|
|
"capabilities": [
|
|
"code_review",
|
|
"security_analysis",
|
|
"performance_optimization",
|
|
"best_practices_enforcement"
|
|
],
|
|
"reasoning_prompts": {
|
|
"system": "You are a senior code reviewer focused on quality and security...",
|
|
"review_criteria": "Evaluate code changes against these criteria...",
|
|
"feedback_delivery": "Provide constructive feedback to developers..."
|
|
}
|
|
}
|
|
```
|
|
|
|
**3. Documentation Agent** (`bzzz://docs@*`)
|
|
```json
|
|
{
|
|
"role": "documentation",
|
|
"capabilities": [
|
|
"technical_writing",
|
|
"api_documentation",
|
|
"user_guides",
|
|
"knowledge_synthesis"
|
|
],
|
|
"reasoning_prompts": {
|
|
"system": "You specialize in creating clear, comprehensive technical documentation...",
|
|
"content_analysis": "Analyze technical content and identify documentation needs...",
|
|
"audience_adaptation": "Adapt documentation for different audience levels..."
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2.2 Agent Lifecycle Management
|
|
|
|
#### Agent States and Transitions
|
|
|
|
```mermaid
|
|
stateDiagram-v2
|
|
[*] --> Initializing
|
|
Initializing --> Idle: Registration Complete
|
|
Idle --> Active: Task Assigned
|
|
Active --> Collaborating: Multi-agent Context
|
|
Collaborating --> Active: Individual Work
|
|
Active --> Idle: Task Complete
|
|
Idle --> Terminating: Shutdown Signal
|
|
Terminating --> [*]
|
|
|
|
Active --> Escalating: Human Intervention Needed
|
|
Escalating --> Active: Issue Resolved
|
|
Escalating --> Terminating: Unresolvable Issue
|
|
```
|
|
|
|
#### Lifecycle Implementation
|
|
|
|
```go
|
|
type GPTAgent struct {
|
|
ID string
|
|
Role AgentRole
|
|
State AgentState
|
|
Capabilities []string
|
|
|
|
// OpenAI Configuration
|
|
APIKey string
|
|
Model string // gpt-4, gpt-4-turbo, etc.
|
|
TokenLimit int
|
|
|
|
// BZZZ Integration
|
|
P2PNode *p2p.Node
|
|
PubSub *pubsub.PubSub
|
|
Logger *logging.HypercoreLog
|
|
|
|
// Conversation Context
|
|
ActiveThreads map[string]*ConversationThread
|
|
Memory *AgentMemory
|
|
|
|
// Cost Management
|
|
TokenUsage *TokenUsageTracker
|
|
CostLimits *CostLimitConfig
|
|
}
|
|
|
|
func (agent *GPTAgent) Initialize() error {
|
|
// Register with BZZZ network
|
|
if err := agent.announcePresence(); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Subscribe to relevant topics
|
|
if err := agent.subscribeToBzzzTopics(); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Initialize conversation memory
|
|
agent.Memory = NewAgentMemory(agent.ID)
|
|
|
|
agent.State = AgentStateIdle
|
|
return nil
|
|
}
|
|
|
|
func (agent *GPTAgent) ProcessTask(task *repository.Task) error {
|
|
agent.State = AgentStateActive
|
|
|
|
// Create conversation context
|
|
context := agent.buildTaskContext(task)
|
|
|
|
// Check if collaboration is needed
|
|
if agent.shouldCollaborate(task) {
|
|
return agent.initiateCollaboration(task, context)
|
|
}
|
|
|
|
// Process individually
|
|
return agent.processIndividualTask(task, context)
|
|
}
|
|
```
|
|
|
|
### 2.3 Context Sharing and Memory Management
|
|
|
|
#### Agent Memory System
|
|
|
|
```go
|
|
type AgentMemory struct {
|
|
WorkingMemory map[string]interface{} // Current task context
|
|
EpisodicMemory []ConversationEpisode // Past interactions
|
|
SemanticMemory *KnowledgeGraph // Domain knowledge
|
|
|
|
// Conversation History
|
|
ThreadMemories map[string]*ThreadMemory
|
|
|
|
// Learning and Adaptation
|
|
PerformanceFeedback []FeedbackEntry
|
|
CollaborationHistory []CollaborationEntry
|
|
}
|
|
|
|
type ConversationEpisode struct {
|
|
Timestamp time.Time
|
|
Participants []string
|
|
Topic string
|
|
Summary string
|
|
Outcome string
|
|
Lessons []string
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 3. Conversation Integration
|
|
|
|
### 3.1 Threaded Conversation Architecture
|
|
|
|
#### Thread Management System
|
|
|
|
```go
|
|
type ConversationManager struct {
|
|
activeThreads map[string]*ConversationThread
|
|
threadIndex *ThreadIndex
|
|
summaryService *ThreadSummaryService
|
|
escalationRules *EscalationRuleEngine
|
|
}
|
|
|
|
type ConversationThread struct {
|
|
ID string
|
|
Topic string
|
|
Participants []AgentParticipant
|
|
Messages []ThreadMessage
|
|
State ThreadState
|
|
|
|
// Context Management
|
|
SharedContext map[string]interface{}
|
|
DecisionLog []Decision
|
|
|
|
// Thread Lifecycle
|
|
CreatedAt time.Time
|
|
LastActivity time.Time
|
|
AutoClose bool
|
|
CloseAfter time.Duration
|
|
}
|
|
|
|
type ThreadMessage struct {
|
|
ID string
|
|
From string
|
|
Role AgentRole
|
|
Content string
|
|
MessageType MessageType
|
|
Timestamp time.Time
|
|
|
|
// Threading
|
|
ReplyTo string
|
|
Reactions []MessageReaction
|
|
|
|
// GPT-4 Specific
|
|
TokenCount int
|
|
Model string
|
|
Context *GPTContext
|
|
}
|
|
```
|
|
|
|
### 3.2 Multi-Agent Collaboration Patterns
|
|
|
|
#### Collaborative Review Pattern
|
|
|
|
```go
|
|
func (cm *ConversationManager) InitiateCollaborativeReview(
|
|
task *repository.Task,
|
|
requiredRoles []AgentRole,
|
|
) (*ConversationThread, error) {
|
|
|
|
// Create thread for collaborative review
|
|
thread := &ConversationThread{
|
|
ID: generateThreadID("review", task.Number),
|
|
Topic: fmt.Sprintf("Collaborative Review: %s", task.Title),
|
|
State: ThreadStateActive,
|
|
}
|
|
|
|
// Invite relevant agents
|
|
for _, role := range requiredRoles {
|
|
agents := cm.findAvailableAgents(role)
|
|
for _, agent := range agents[:min(2, len(agents))] {
|
|
thread.Participants = append(thread.Participants, AgentParticipant{
|
|
AgentID: agent.ID,
|
|
Role: role,
|
|
Status: ParticipantStatusInvited,
|
|
})
|
|
}
|
|
}
|
|
|
|
// Set initial context
|
|
thread.SharedContext = map[string]interface{}{
|
|
"task_details": task,
|
|
"review_criteria": getReviewCriteria(task),
|
|
"deadline": calculateReviewDeadline(task),
|
|
}
|
|
|
|
// Start the conversation
|
|
initialPrompt := cm.buildCollaborativeReviewPrompt(task, thread)
|
|
if err := cm.postInitialMessage(thread, initialPrompt); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return thread, nil
|
|
}
|
|
```
|
|
|
|
#### Escalation Workflow Pattern
|
|
|
|
```go
|
|
type EscalationRuleEngine struct {
|
|
rules []EscalationRule
|
|
}
|
|
|
|
type EscalationRule struct {
|
|
Name string
|
|
Conditions []EscalationCondition
|
|
Actions []EscalationAction
|
|
Priority int
|
|
}
|
|
|
|
type EscalationCondition struct {
|
|
Type string // "thread_duration", "consensus_failure", "error_rate"
|
|
Threshold interface{}
|
|
Timeframe time.Duration
|
|
}
|
|
|
|
func (ere *EscalationRuleEngine) CheckEscalation(thread *ConversationThread) []EscalationAction {
|
|
var actions []EscalationAction
|
|
|
|
for _, rule := range ere.rules {
|
|
if ere.evaluateConditions(rule.Conditions, thread) {
|
|
actions = append(actions, rule.Actions...)
|
|
}
|
|
}
|
|
|
|
return actions
|
|
}
|
|
|
|
// Example escalation scenarios
|
|
var DefaultEscalationRules = []EscalationRule{
|
|
{
|
|
Name: "Long Running Thread",
|
|
Conditions: []EscalationCondition{
|
|
{Type: "thread_duration", Threshold: 2 * time.Hour, Timeframe: 0},
|
|
{Type: "no_progress", Threshold: true, Timeframe: 30 * time.Minute},
|
|
},
|
|
Actions: []EscalationAction{
|
|
{Type: "notify_human", Target: "project_manager"},
|
|
{Type: "request_expert", Expertise: []string{"domain_expert"}},
|
|
},
|
|
},
|
|
{
|
|
Name: "Consensus Failure",
|
|
Conditions: []EscalationCondition{
|
|
{Type: "disagreement_count", Threshold: 3, Timeframe: 0},
|
|
{Type: "no_resolution", Threshold: true, Timeframe: 1 * time.Hour},
|
|
},
|
|
Actions: []EscalationAction{
|
|
{Type: "escalate_to_architect", Priority: "high"},
|
|
{Type: "create_decision_thread", Participants: []string{"senior_architect"}},
|
|
},
|
|
},
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 4. CHORUS Integration Patterns
|
|
|
|
### 4.1 SLURP Context Integration
|
|
|
|
#### SLURP Event Generation from HMMM Consensus
|
|
|
|
```go
|
|
type SLURPIntegrationService struct {
|
|
slurpClient *slurp.Client
|
|
conversationMgr *ConversationManager
|
|
eventGenerator *ConsensusEventGenerator
|
|
}
|
|
|
|
func (sis *SLURPIntegrationService) GenerateSLURPEventFromConsensus(
|
|
thread *ConversationThread,
|
|
consensus *ThreadConsensus,
|
|
) (*slurp.ContextEvent, error) {
|
|
|
|
// Analyze conversation for insights
|
|
insights := sis.extractInsights(thread)
|
|
|
|
// Generate structured event
|
|
event := &slurp.ContextEvent{
|
|
Type: "agent_consensus",
|
|
Source: "bzzz_mcp_integration",
|
|
Timestamp: time.Now(),
|
|
Context: slurp.ContextData{
|
|
ConversationID: thread.ID,
|
|
Participants: getParticipantRoles(thread.Participants),
|
|
Topic: thread.Topic,
|
|
Insights: insights,
|
|
DecisionPoints: consensus.Decisions,
|
|
Confidence: consensus.ConfidenceScore,
|
|
},
|
|
Metadata: map[string]interface{}{
|
|
"thread_duration": thread.LastActivity.Sub(thread.CreatedAt).Minutes(),
|
|
"message_count": len(thread.Messages),
|
|
"agent_count": len(thread.Participants),
|
|
"consensus_type": consensus.Type,
|
|
},
|
|
}
|
|
|
|
// Send to SLURP system
|
|
if err := sis.slurpClient.SubmitContextEvent(event); err != nil {
|
|
return nil, fmt.Errorf("failed to submit SLURP event: %w", err)
|
|
}
|
|
|
|
// Notify BZZZ network of event generation
|
|
sis.notifyEventGenerated(thread, event)
|
|
|
|
return event, nil
|
|
}
|
|
```
|
|
|
|
### 4.2 WHOOSH Orchestration Integration
|
|
|
|
#### GPT-4 Agent Registration with WHOOSH
|
|
|
|
```go
|
|
type WHOOSHIntegrationService struct {
|
|
whooshClient *whoosh.Client
|
|
agentRegistry map[string]*GPTAgent
|
|
}
|
|
|
|
func (wis *WHOOSHIntegrationService) RegisterGPTAgentWithWHOOSH(
|
|
agent *GPTAgent,
|
|
) error {
|
|
|
|
// Create WHOOSH agent registration
|
|
registration := &whoosh.AgentRegistration{
|
|
AgentID: agent.ID,
|
|
Type: "gpt_agent",
|
|
Role: string(agent.Role),
|
|
Capabilities: agent.Capabilities,
|
|
Metadata: map[string]interface{}{
|
|
"model": agent.Model,
|
|
"max_tokens": agent.TokenLimit,
|
|
"cost_per_token": getTokenCost(agent.Model),
|
|
"bzzz_address": fmt.Sprintf("bzzz://%s:%s@*", agent.ID, agent.Role),
|
|
},
|
|
Endpoints: whoosh.AgentEndpoints{
|
|
StatusCheck: fmt.Sprintf("http://mcp-server:8080/agents/%s/status", agent.ID),
|
|
TaskAssign: fmt.Sprintf("http://mcp-server:8080/agents/%s/tasks", agent.ID),
|
|
Collaborate: fmt.Sprintf("http://mcp-server:8080/agents/%s/collaborate", agent.ID),
|
|
},
|
|
HealthCheck: whoosh.HealthCheckConfig{
|
|
Interval: 30 * time.Second,
|
|
Timeout: 10 * time.Second,
|
|
Retries: 3,
|
|
},
|
|
}
|
|
|
|
// Submit registration
|
|
if err := wis.whooshClient.RegisterAgent(registration); err != nil {
|
|
return fmt.Errorf("failed to register with WHOOSH: %w", err)
|
|
}
|
|
|
|
// Start health reporting
|
|
go wis.reportAgentHealth(agent)
|
|
|
|
return nil
|
|
}
|
|
```
|
|
|
|
### 4.3 TGN (The Garden Network) Connectivity
|
|
|
|
#### Cross-Network Agent Discovery
|
|
|
|
```go
|
|
type TGNConnector struct {
|
|
tgnClient *tgn.Client
|
|
bzzzNetwork *BzzzNetwork
|
|
agentRegistry *AgentRegistry
|
|
}
|
|
|
|
func (tgn *TGNConnector) DiscoverCrossNetworkAgents(
|
|
query *AgentDiscoveryQuery,
|
|
) ([]*RemoteAgent, error) {
|
|
|
|
// Query TGN for agents matching criteria
|
|
tgnQuery := &tgn.AgentQuery{
|
|
Capabilities: query.RequiredCapabilities,
|
|
Role: query.Role,
|
|
Network: "bzzz",
|
|
Available: true,
|
|
}
|
|
|
|
remoteAgents, err := tgn.tgnClient.DiscoverAgents(tgnQuery)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Convert TGN agents to BZZZ addressable agents
|
|
var bzzzAgents []*RemoteAgent
|
|
for _, remote := range remoteAgents {
|
|
bzzzAgent := &RemoteAgent{
|
|
ID: remote.ID,
|
|
Network: remote.Network,
|
|
BzzzAddress: fmt.Sprintf("bzzz://%s:%s@%s/*",
|
|
remote.ID, remote.Role, remote.Network),
|
|
Capabilities: remote.Capabilities,
|
|
Endpoint: remote.Endpoint,
|
|
}
|
|
bzzzAgents = append(bzzzAgents, bzzzAgent)
|
|
}
|
|
|
|
return bzzzAgents, nil
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 5. Implementation Roadmap
|
|
|
|
### 5.1 Phase 1: Core MCP Infrastructure (Weeks 1-2)
|
|
|
|
#### Week 1: MCP Server Foundation
|
|
- [ ] Implement basic MCP server with tool registry
|
|
- [ ] Create OpenAI API integration wrapper
|
|
- [ ] Establish P2P node connection interface
|
|
- [ ] Basic agent lifecycle management
|
|
|
|
**Key Deliverables:**
|
|
- MCP server binary with basic tool definitions
|
|
- OpenAI GPT-4 integration module
|
|
- Agent registration and deregistration flows
|
|
|
|
#### Week 2: Protocol Tool Implementation
|
|
- [ ] Implement all six core bzzz:// protocol tools
|
|
- [ ] Add semantic addressing support
|
|
- [ ] Create pubsub message routing
|
|
- [ ] Basic conversation threading
|
|
|
|
**Key Deliverables:**
|
|
- Full protocol tool suite
|
|
- Address resolution system
|
|
- Message routing infrastructure
|
|
|
|
### 5.2 Phase 2: Agent Framework (Weeks 3-4)
|
|
|
|
#### Week 3: Agent Specializations
|
|
- [ ] Define role-based agent templates
|
|
- [ ] Implement reasoning prompt systems
|
|
- [ ] Create capability matching logic
|
|
- [ ] Agent memory management
|
|
|
|
#### Week 4: Collaboration Patterns
|
|
- [ ] Multi-agent conversation threading
|
|
- [ ] Consensus building algorithms
|
|
- [ ] Escalation rule engine
|
|
- [ ] Human intervention workflows
|
|
|
|
### 5.3 Phase 3: CHORUS Integration (Weeks 5-6)
|
|
|
|
#### Week 5: SLURP Integration
|
|
- [ ] Consensus-to-SLURP event generation
|
|
- [ ] Context relevance scoring
|
|
- [ ] Feedback loop implementation
|
|
- [ ] Performance optimization
|
|
|
|
#### Week 6: WHOOSH & TGN Integration
|
|
- [ ] Agent registration with WHOOSH
|
|
- [ ] Cross-network agent discovery
|
|
- [ ] Task orchestration bridging
|
|
- [ ] Network topology management
|
|
|
|
### 5.4 Phase 4: Production Readiness (Weeks 7-8)
|
|
|
|
#### Week 7: Monitoring & Cost Management
|
|
- [ ] OpenAI cost tracking and limits
|
|
- [ ] Performance monitoring dashboards
|
|
- [ ] Conversation analytics
|
|
- [ ] Agent efficiency metrics
|
|
|
|
#### Week 8: Testing & Deployment
|
|
- [ ] End-to-end integration testing
|
|
- [ ] Load testing with multiple agents
|
|
- [ ] Security auditing
|
|
- [ ] Production deployment automation
|
|
|
|
---
|
|
|
|
## 6. Technical Requirements
|
|
|
|
### 6.1 Infrastructure Requirements
|
|
|
|
#### Server Specifications
|
|
- **CPU**: 8+ cores for concurrent agent processing
|
|
- **RAM**: 32GB+ for conversation context management
|
|
- **Storage**: 1TB+ SSD for conversation history and logs
|
|
- **Network**: High-speed connection for P2P communication
|
|
|
|
#### Software Dependencies
|
|
- **Go 1.21+**: For BZZZ P2P integration
|
|
- **Node.js 18+**: For MCP server implementation
|
|
- **Docker**: For containerized deployment
|
|
- **PostgreSQL 14+**: For conversation persistence
|
|
|
|
### 6.2 Security Considerations
|
|
|
|
#### API Key Management
|
|
- OpenAI API keys stored in secure vault
|
|
- Per-agent API key rotation
|
|
- Usage monitoring and alerting
|
|
- Rate limiting and quotas
|
|
|
|
#### P2P Security
|
|
- Message signing and verification
|
|
- Agent authentication protocols
|
|
- Network access controls
|
|
- Audit logging
|
|
|
|
### 6.3 Cost Management
|
|
|
|
#### Token Usage Optimization
|
|
```go
|
|
type CostOptimizer struct {
|
|
tokenBudgets map[string]*TokenBudget
|
|
usageTracking *UsageTracker
|
|
costCalculator *CostCalculator
|
|
}
|
|
|
|
func (co *CostOptimizer) OptimizeConversation(thread *ConversationThread) {
|
|
// Compress context when approaching limits
|
|
if thread.EstimatedTokens() > thread.TokenBudget * 0.8 {
|
|
co.compressConversationHistory(thread)
|
|
}
|
|
|
|
// Use cheaper models for routine tasks
|
|
if thread.Complexity < ComplexityThreshold {
|
|
co.assignModel(thread, "gpt-4o-mini")
|
|
}
|
|
|
|
// Implement conversation summarization
|
|
if len(thread.Messages) > MaxMessagesBeforeSummary {
|
|
co.summarizeAndTruncate(thread)
|
|
}
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 7. Code Examples
|
|
|
|
### 7.1 MCP Server Implementation
|
|
|
|
```go
|
|
// pkg/mcp/server.go
|
|
package mcp
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"net/http"
|
|
|
|
"github.com/anthonyrawlins/bzzz/p2p"
|
|
"github.com/anthonyrawlins/bzzz/pubsub"
|
|
openai "github.com/sashabaranov/go-openai"
|
|
)
|
|
|
|
type McpServer struct {
|
|
p2pNode *p2p.Node
|
|
pubsub *pubsub.PubSub
|
|
openaiClient *openai.Client
|
|
agents map[string]*GPTAgent
|
|
tools map[string]ToolHandler
|
|
}
|
|
|
|
func NewMcpServer(apiKey string, node *p2p.Node, ps *pubsub.PubSub) *McpServer {
|
|
server := &McpServer{
|
|
p2pNode: node,
|
|
pubsub: ps,
|
|
openaiClient: openai.NewClient(apiKey),
|
|
agents: make(map[string]*GPTAgent),
|
|
tools: make(map[string]ToolHandler),
|
|
}
|
|
|
|
// Register protocol tools
|
|
server.registerProtocolTools()
|
|
|
|
return server
|
|
}
|
|
|
|
func (s *McpServer) registerProtocolTools() {
|
|
s.tools["bzzz_announce"] = s.handleBzzzAnnounce
|
|
s.tools["bzzz_lookup"] = s.handleBzzzLookup
|
|
s.tools["bzzz_get"] = s.handleBzzzGet
|
|
s.tools["bzzz_post"] = s.handleBzzzPost
|
|
s.tools["bzzz_thread"] = s.handleBzzzThread
|
|
s.tools["bzzz_subscribe"] = s.handleBzzzSubscribe
|
|
}
|
|
|
|
func (s *McpServer) handleBzzzAnnounce(params map[string]interface{}) (interface{}, error) {
|
|
agentID, ok := params["agent_id"].(string)
|
|
if !ok {
|
|
return nil, fmt.Errorf("agent_id is required")
|
|
}
|
|
|
|
role, ok := params["role"].(string)
|
|
if !ok {
|
|
return nil, fmt.Errorf("role is required")
|
|
}
|
|
|
|
// Create announcement message
|
|
announcement := map[string]interface{}{
|
|
"agent_id": agentID,
|
|
"role": role,
|
|
"capabilities": params["capabilities"],
|
|
"specialization": params["specialization"],
|
|
"max_tasks": params["max_tasks"],
|
|
"announced_at": time.Now(),
|
|
}
|
|
|
|
// Publish to BZZZ network
|
|
err := s.pubsub.PublishBzzzMessage(pubsub.CapabilityBcast, announcement)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("failed to announce: %w", err)
|
|
}
|
|
|
|
return map[string]interface{}{
|
|
"status": "announced",
|
|
"message": fmt.Sprintf("Agent %s (%s) announced to network", agentID, role),
|
|
}, nil
|
|
}
|
|
|
|
func (s *McpServer) handleBzzzLookup(params map[string]interface{}) (interface{}, error) {
|
|
address, ok := params["semantic_address"].(string)
|
|
if !ok {
|
|
return nil, fmt.Errorf("semantic_address is required")
|
|
}
|
|
|
|
// Parse semantic address (bzzz://agent:role@project:task/path)
|
|
parsedAddr, err := parseSemanticAddress(address)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("invalid semantic address: %w", err)
|
|
}
|
|
|
|
// Discover matching agents
|
|
agents := s.discoverAgents(parsedAddr, params["filter_criteria"])
|
|
|
|
return map[string]interface{}{
|
|
"address": address,
|
|
"matches": agents,
|
|
"count": len(agents),
|
|
}, nil
|
|
}
|
|
```
|
|
|
|
### 7.2 GPT-4 Agent Implementation
|
|
|
|
```go
|
|
// pkg/agents/gpt_agent.go
|
|
package agents
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
|
|
openai "github.com/sashabaranov/go-openai"
|
|
"github.com/anthonyrawlins/bzzz/pubsub"
|
|
)
|
|
|
|
type GPTAgent struct {
|
|
ID string
|
|
Role AgentRole
|
|
Model string
|
|
Client *openai.Client
|
|
|
|
SystemPrompt string
|
|
Memory *AgentMemory
|
|
CostTracker *CostTracker
|
|
|
|
// BZZZ Integration
|
|
PubSub *pubsub.PubSub
|
|
Logger *logging.HypercoreLog
|
|
}
|
|
|
|
func (agent *GPTAgent) ProcessCollaborativeTask(
|
|
task *repository.Task,
|
|
thread *ConversationThread,
|
|
) error {
|
|
|
|
// Build context from conversation history
|
|
context := agent.buildTaskContext(task, thread)
|
|
|
|
// Create GPT-4 request
|
|
messages := []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleSystem,
|
|
Content: agent.buildSystemPrompt(task, thread),
|
|
},
|
|
}
|
|
|
|
// Add conversation history
|
|
for _, msg := range thread.Messages {
|
|
messages = append(messages, openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: fmt.Sprintf("[%s]: %s", msg.From, msg.Content),
|
|
})
|
|
}
|
|
|
|
// Add current task context
|
|
messages = append(messages, openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: agent.formatTaskForGPT(task),
|
|
})
|
|
|
|
// Make GPT-4 request
|
|
resp, err := agent.Client.CreateChatCompletion(
|
|
context.Background(),
|
|
openai.ChatCompletionRequest{
|
|
Model: agent.Model,
|
|
Messages: messages,
|
|
MaxTokens: 2000,
|
|
Tools: agent.getAvailableTools(),
|
|
},
|
|
)
|
|
|
|
if err != nil {
|
|
return fmt.Errorf("GPT-4 request failed: %w", err)
|
|
}
|
|
|
|
// Process response and tool calls
|
|
return agent.processGPTResponse(resp, thread)
|
|
}
|
|
|
|
func (agent *GPTAgent) buildSystemPrompt(task *repository.Task, thread *ConversationThread) string {
|
|
basePrompt := agent.SystemPrompt
|
|
|
|
// Add role-specific context
|
|
roleContext := agent.getRoleSpecificContext(task)
|
|
|
|
// Add collaboration context
|
|
collabContext := fmt.Sprintf(
|
|
"\nYou are collaborating with %d other agents in thread '%s'.\n"+
|
|
"Current participants: %s\n"+
|
|
"Thread topic: %s\n"+
|
|
"Your role in this collaboration: %s\n",
|
|
len(thread.Participants)-1,
|
|
thread.ID,
|
|
getParticipantList(thread.Participants),
|
|
thread.Topic,
|
|
agent.Role,
|
|
)
|
|
|
|
// Add available tools context
|
|
toolsContext := "\nAvailable BZZZ tools:\n"
|
|
for toolName, tool := range agent.getAvailableTools() {
|
|
toolsContext += fmt.Sprintf("- %s: %s\n", toolName, tool.Function.Description)
|
|
}
|
|
|
|
return basePrompt + roleContext + collabContext + toolsContext
|
|
}
|
|
```
|
|
|
|
### 7.3 Conversation Threading
|
|
|
|
```go
|
|
// pkg/conversations/thread_manager.go
|
|
package conversations
|
|
|
|
type ThreadManager struct {
|
|
threads map[string]*ConversationThread
|
|
participants map[string][]string // agentID -> threadIDs
|
|
summaryEngine *SummaryEngine
|
|
escalationMgr *EscalationManager
|
|
}
|
|
|
|
func (tm *ThreadManager) CreateCollaborativeThread(
|
|
topic string,
|
|
task *repository.Task,
|
|
requiredRoles []AgentRole,
|
|
) (*ConversationThread, error) {
|
|
|
|
thread := &ConversationThread{
|
|
ID: generateThreadID(topic, task.Number),
|
|
Topic: topic,
|
|
State: ThreadStateActive,
|
|
CreatedAt: time.Now(),
|
|
SharedContext: map[string]interface{}{
|
|
"task": task,
|
|
"required_roles": requiredRoles,
|
|
},
|
|
}
|
|
|
|
// Find and invite agents
|
|
for _, role := range requiredRoles {
|
|
agents := tm.findAvailableAgentsByRole(role)
|
|
if len(agents) == 0 {
|
|
return nil, fmt.Errorf("no available agents for role: %s", role)
|
|
}
|
|
|
|
// Select best agent for this role
|
|
selectedAgent := tm.selectBestAgent(agents, task)
|
|
|
|
thread.Participants = append(thread.Participants, AgentParticipant{
|
|
AgentID: selectedAgent.ID,
|
|
Role: role,
|
|
Status: ParticipantStatusInvited,
|
|
})
|
|
}
|
|
|
|
// Initialize thread
|
|
tm.threads[thread.ID] = thread
|
|
|
|
// Send invitations
|
|
for _, participant := range thread.Participants {
|
|
if err := tm.inviteToThread(participant.AgentID, thread); err != nil {
|
|
fmt.Printf("Failed to invite agent %s: %v\n", participant.AgentID, err)
|
|
}
|
|
}
|
|
|
|
// Start thread monitoring
|
|
go tm.monitorThread(thread)
|
|
|
|
return thread, nil
|
|
}
|
|
|
|
func (tm *ThreadManager) PostMessage(
|
|
threadID string,
|
|
fromAgent string,
|
|
content string,
|
|
messageType MessageType,
|
|
) error {
|
|
|
|
thread, exists := tm.threads[threadID]
|
|
if !exists {
|
|
return fmt.Errorf("thread %s not found", threadID)
|
|
}
|
|
|
|
message := ThreadMessage{
|
|
ID: generateMessageID(),
|
|
From: fromAgent,
|
|
Content: content,
|
|
Type: messageType,
|
|
Timestamp: time.Now(),
|
|
}
|
|
|
|
thread.Messages = append(thread.Messages, message)
|
|
thread.LastActivity = time.Now()
|
|
|
|
// Notify all participants
|
|
for _, participant := range thread.Participants {
|
|
if participant.AgentID != fromAgent {
|
|
if err := tm.notifyParticipant(participant.AgentID, thread, message); err != nil {
|
|
fmt.Printf("Failed to notify %s: %v\n", participant.AgentID, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for escalation conditions
|
|
if actions := tm.escalationMgr.CheckEscalation(thread); len(actions) > 0 {
|
|
tm.executeEscalationActions(thread, actions)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 8. Success Metrics
|
|
|
|
### 8.1 Performance Metrics
|
|
- **Agent Response Time**: < 30 seconds for routine tasks
|
|
- **Collaboration Efficiency**: 40% reduction in task completion time
|
|
- **Consensus Success Rate**: > 85% of collaborative discussions reach consensus
|
|
- **Escalation Rate**: < 15% of threads require human intervention
|
|
|
|
### 8.2 Cost Metrics
|
|
- **Token Efficiency**: < $0.50 per task for routine tasks
|
|
- **Model Selection Accuracy**: > 90% appropriate model selection
|
|
- **Context Compression Ratio**: 70% reduction in token usage through compression
|
|
|
|
### 8.3 Quality Metrics
|
|
- **Code Review Accuracy**: > 95% critical issues detected
|
|
- **Documentation Completeness**: > 90% coverage of technical requirements
|
|
- **Architecture Consistency**: > 95% adherence to established patterns
|
|
|
|
---
|
|
|
|
## 9. Security and Compliance
|
|
|
|
### 9.1 Data Protection
|
|
- All conversation data encrypted at rest and in transit
|
|
- Agent memory isolation between different projects
|
|
- Automatic PII detection and redaction
|
|
- Configurable data retention policies
|
|
|
|
### 9.2 Access Control
|
|
- Role-based access to different agent capabilities
|
|
- Project-level agent permissions
|
|
- API key scoping and rotation
|
|
- Audit logging of all agent actions
|
|
|
|
### 9.3 Compliance Considerations
|
|
- GDPR compliance for European operations
|
|
- SOC 2 Type II compliance framework
|
|
- Regular security audits and penetration testing
|
|
- Incident response procedures for AI agent failures
|
|
|
|
---
|
|
|
|
This comprehensive design provides the foundation for implementing GPT-4 agents as first-class citizens in the BZZZ v2 distributed system, enabling sophisticated multi-agent collaboration while maintaining the security, performance, and cost-effectiveness required for production deployment. |