Files
bzzz/MCP_INTEGRATION_DESIGN.md
anthonyrawlins 065dddf8d5 Prepare for v2 development: Add MCP integration and future development planning
- Add FUTURE_DEVELOPMENT.md with comprehensive v2 protocol specification
- Add MCP integration design and implementation foundation
- Add infrastructure and deployment configurations
- Update system architecture for v2 evolution

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-07 14:38:22 +10:00

1135 lines
31 KiB
Markdown

# BZZZ v2 MCP Integration Design
## GPT-4 Agent Framework for Distributed P2P Collaboration
### Executive Summary
This document outlines the comprehensive Model Context Protocol (MCP) integration for BZZZ v2, enabling GPT-4 agents to operate as first-class citizens within the distributed P2P task coordination system. The integration provides a bridge between OpenAI's GPT-4 models and the existing libp2p-based BZZZ infrastructure, creating a hybrid human-AI collaboration environment.
---
## 1. MCP Server Architecture
### 1.1 Core MCP Server Design
```typescript
interface BzzzMcpServer {
// Protocol Operations
tools: {
bzzz_announce: ToolDefinition;
bzzz_lookup: ToolDefinition;
bzzz_get: ToolDefinition;
bzzz_post: ToolDefinition;
bzzz_thread: ToolDefinition;
bzzz_subscribe: ToolDefinition;
};
// Agent Management
agentLifecycle: AgentLifecycleManager;
conversationManager: ConversationManager;
costTracker: OpenAICostTracker;
// BZZZ Protocol Integration
p2pNode: P2PNodeInterface;
pubsubManager: PubSubManager;
hypercoreLogger: HypercoreLogger;
}
```
### 1.2 MCP Tool Registry
The MCP server exposes BZZZ protocol operations as standardized tools that GPT-4 agents can invoke:
#### Core Protocol Tools
**1. `bzzz_announce`** - Agent presence announcement
```json
{
"name": "bzzz_announce",
"description": "Announce agent presence and capabilities on the BZZZ network",
"inputSchema": {
"type": "object",
"properties": {
"agent_id": {"type": "string", "description": "Unique agent identifier"},
"role": {"type": "string", "description": "Agent role (architect, reviewer, etc.)"},
"capabilities": {"type": "array", "items": {"type": "string"}},
"specialization": {"type": "string"},
"max_tasks": {"type": "number", "default": 3}
}
}
}
```
**2. `bzzz_lookup`** - Semantic address discovery
```json
{
"name": "bzzz_lookup",
"description": "Discover agents and resources using semantic addressing",
"inputSchema": {
"type": "object",
"properties": {
"semantic_address": {
"type": "string",
"description": "Format: bzzz://agent:role@project:task/path"
},
"filter_criteria": {
"type": "object",
"properties": {
"expertise": {"type": "array"},
"availability": {"type": "boolean"},
"performance_threshold": {"type": "number"}
}
}
}
}
}
```
**3. `bzzz_get`** - Content retrieval from addresses
```json
{
"name": "bzzz_get",
"description": "Retrieve content from BZZZ semantic addresses",
"inputSchema": {
"type": "object",
"properties": {
"address": {"type": "string"},
"include_metadata": {"type": "boolean", "default": true},
"max_history": {"type": "number", "default": 10}
}
}
}
```
**4. `bzzz_post`** - Event/message posting
```json
{
"name": "bzzz_post",
"description": "Post events or messages to BZZZ addresses",
"inputSchema": {
"type": "object",
"properties": {
"target_address": {"type": "string"},
"message_type": {"type": "string"},
"content": {"type": "object"},
"priority": {"type": "string", "enum": ["low", "medium", "high", "urgent"]},
"thread_id": {"type": "string", "optional": true}
}
}
}
```
**5. `bzzz_thread`** - Conversation management
```json
{
"name": "bzzz_thread",
"description": "Manage threaded conversations between agents",
"inputSchema": {
"type": "object",
"properties": {
"action": {"type": "string", "enum": ["create", "join", "leave", "list", "summarize"]},
"thread_id": {"type": "string", "optional": true},
"participants": {"type": "array", "items": {"type": "string"}},
"topic": {"type": "string", "optional": true}
}
}
}
```
**6. `bzzz_subscribe`** - Real-time event subscription
```json
{
"name": "bzzz_subscribe",
"description": "Subscribe to real-time events from BZZZ network",
"inputSchema": {
"type": "object",
"properties": {
"event_types": {"type": "array", "items": {"type": "string"}},
"filter_address": {"type": "string", "optional": true},
"callback_webhook": {"type": "string", "optional": true}
}
}
}
```
---
## 2. GPT-4 Agent Framework
### 2.1 Agent Specialization Definitions
#### Core Agent Types
**1. Architect Agent** (`bzzz://architect@*`)
```json
{
"role": "architect",
"capabilities": [
"system_design",
"architecture_review",
"technology_selection",
"scalability_analysis"
],
"reasoning_prompts": {
"system": "You are a senior software architect specializing in distributed systems...",
"task_analysis": "Analyze this task from an architectural perspective...",
"collaboration": "Coordinate with other architects and provide technical guidance..."
},
"interaction_patterns": {
"peer_architects": "collaborative_review",
"developers": "guidance_provision",
"reviewers": "design_validation"
}
}
```
**2. Code Reviewer Agent** (`bzzz://reviewer@*`)
```json
{
"role": "reviewer",
"capabilities": [
"code_review",
"security_analysis",
"performance_optimization",
"best_practices_enforcement"
],
"reasoning_prompts": {
"system": "You are a senior code reviewer focused on quality and security...",
"review_criteria": "Evaluate code changes against these criteria...",
"feedback_delivery": "Provide constructive feedback to developers..."
}
}
```
**3. Documentation Agent** (`bzzz://docs@*`)
```json
{
"role": "documentation",
"capabilities": [
"technical_writing",
"api_documentation",
"user_guides",
"knowledge_synthesis"
],
"reasoning_prompts": {
"system": "You specialize in creating clear, comprehensive technical documentation...",
"content_analysis": "Analyze technical content and identify documentation needs...",
"audience_adaptation": "Adapt documentation for different audience levels..."
}
}
```
### 2.2 Agent Lifecycle Management
#### Agent States and Transitions
```mermaid
stateDiagram-v2
[*] --> Initializing
Initializing --> Idle: Registration Complete
Idle --> Active: Task Assigned
Active --> Collaborating: Multi-agent Context
Collaborating --> Active: Individual Work
Active --> Idle: Task Complete
Idle --> Terminating: Shutdown Signal
Terminating --> [*]
Active --> Escalating: Human Intervention Needed
Escalating --> Active: Issue Resolved
Escalating --> Terminating: Unresolvable Issue
```
#### Lifecycle Implementation
```go
type GPTAgent struct {
ID string
Role AgentRole
State AgentState
Capabilities []string
// OpenAI Configuration
APIKey string
Model string // gpt-4, gpt-4-turbo, etc.
TokenLimit int
// BZZZ Integration
P2PNode *p2p.Node
PubSub *pubsub.PubSub
Logger *logging.HypercoreLog
// Conversation Context
ActiveThreads map[string]*ConversationThread
Memory *AgentMemory
// Cost Management
TokenUsage *TokenUsageTracker
CostLimits *CostLimitConfig
}
func (agent *GPTAgent) Initialize() error {
// Register with BZZZ network
if err := agent.announcePresence(); err != nil {
return err
}
// Subscribe to relevant topics
if err := agent.subscribeToBzzzTopics(); err != nil {
return err
}
// Initialize conversation memory
agent.Memory = NewAgentMemory(agent.ID)
agent.State = AgentStateIdle
return nil
}
func (agent *GPTAgent) ProcessTask(task *repository.Task) error {
agent.State = AgentStateActive
// Create conversation context
context := agent.buildTaskContext(task)
// Check if collaboration is needed
if agent.shouldCollaborate(task) {
return agent.initiateCollaboration(task, context)
}
// Process individually
return agent.processIndividualTask(task, context)
}
```
### 2.3 Context Sharing and Memory Management
#### Agent Memory System
```go
type AgentMemory struct {
WorkingMemory map[string]interface{} // Current task context
EpisodicMemory []ConversationEpisode // Past interactions
SemanticMemory *KnowledgeGraph // Domain knowledge
// Conversation History
ThreadMemories map[string]*ThreadMemory
// Learning and Adaptation
PerformanceFeedback []FeedbackEntry
CollaborationHistory []CollaborationEntry
}
type ConversationEpisode struct {
Timestamp time.Time
Participants []string
Topic string
Summary string
Outcome string
Lessons []string
}
```
---
## 3. Conversation Integration
### 3.1 Threaded Conversation Architecture
#### Thread Management System
```go
type ConversationManager struct {
activeThreads map[string]*ConversationThread
threadIndex *ThreadIndex
summaryService *ThreadSummaryService
escalationRules *EscalationRuleEngine
}
type ConversationThread struct {
ID string
Topic string
Participants []AgentParticipant
Messages []ThreadMessage
State ThreadState
// Context Management
SharedContext map[string]interface{}
DecisionLog []Decision
// Thread Lifecycle
CreatedAt time.Time
LastActivity time.Time
AutoClose bool
CloseAfter time.Duration
}
type ThreadMessage struct {
ID string
From string
Role AgentRole
Content string
MessageType MessageType
Timestamp time.Time
// Threading
ReplyTo string
Reactions []MessageReaction
// GPT-4 Specific
TokenCount int
Model string
Context *GPTContext
}
```
### 3.2 Multi-Agent Collaboration Patterns
#### Collaborative Review Pattern
```go
func (cm *ConversationManager) InitiateCollaborativeReview(
task *repository.Task,
requiredRoles []AgentRole,
) (*ConversationThread, error) {
// Create thread for collaborative review
thread := &ConversationThread{
ID: generateThreadID("review", task.Number),
Topic: fmt.Sprintf("Collaborative Review: %s", task.Title),
State: ThreadStateActive,
}
// Invite relevant agents
for _, role := range requiredRoles {
agents := cm.findAvailableAgents(role)
for _, agent := range agents[:min(2, len(agents))] {
thread.Participants = append(thread.Participants, AgentParticipant{
AgentID: agent.ID,
Role: role,
Status: ParticipantStatusInvited,
})
}
}
// Set initial context
thread.SharedContext = map[string]interface{}{
"task_details": task,
"review_criteria": getReviewCriteria(task),
"deadline": calculateReviewDeadline(task),
}
// Start the conversation
initialPrompt := cm.buildCollaborativeReviewPrompt(task, thread)
if err := cm.postInitialMessage(thread, initialPrompt); err != nil {
return nil, err
}
return thread, nil
}
```
#### Escalation Workflow Pattern
```go
type EscalationRuleEngine struct {
rules []EscalationRule
}
type EscalationRule struct {
Name string
Conditions []EscalationCondition
Actions []EscalationAction
Priority int
}
type EscalationCondition struct {
Type string // "thread_duration", "consensus_failure", "error_rate"
Threshold interface{}
Timeframe time.Duration
}
func (ere *EscalationRuleEngine) CheckEscalation(thread *ConversationThread) []EscalationAction {
var actions []EscalationAction
for _, rule := range ere.rules {
if ere.evaluateConditions(rule.Conditions, thread) {
actions = append(actions, rule.Actions...)
}
}
return actions
}
// Example escalation scenarios
var DefaultEscalationRules = []EscalationRule{
{
Name: "Long Running Thread",
Conditions: []EscalationCondition{
{Type: "thread_duration", Threshold: 2 * time.Hour, Timeframe: 0},
{Type: "no_progress", Threshold: true, Timeframe: 30 * time.Minute},
},
Actions: []EscalationAction{
{Type: "notify_human", Target: "project_manager"},
{Type: "request_expert", Expertise: []string{"domain_expert"}},
},
},
{
Name: "Consensus Failure",
Conditions: []EscalationCondition{
{Type: "disagreement_count", Threshold: 3, Timeframe: 0},
{Type: "no_resolution", Threshold: true, Timeframe: 1 * time.Hour},
},
Actions: []EscalationAction{
{Type: "escalate_to_architect", Priority: "high"},
{Type: "create_decision_thread", Participants: []string{"senior_architect"}},
},
},
}
```
---
## 4. CHORUS Integration Patterns
### 4.1 SLURP Context Integration
#### SLURP Event Generation from HMMM Consensus
```go
type SLURPIntegrationService struct {
slurpClient *slurp.Client
conversationMgr *ConversationManager
eventGenerator *ConsensusEventGenerator
}
func (sis *SLURPIntegrationService) GenerateSLURPEventFromConsensus(
thread *ConversationThread,
consensus *ThreadConsensus,
) (*slurp.ContextEvent, error) {
// Analyze conversation for insights
insights := sis.extractInsights(thread)
// Generate structured event
event := &slurp.ContextEvent{
Type: "agent_consensus",
Source: "bzzz_mcp_integration",
Timestamp: time.Now(),
Context: slurp.ContextData{
ConversationID: thread.ID,
Participants: getParticipantRoles(thread.Participants),
Topic: thread.Topic,
Insights: insights,
DecisionPoints: consensus.Decisions,
Confidence: consensus.ConfidenceScore,
},
Metadata: map[string]interface{}{
"thread_duration": thread.LastActivity.Sub(thread.CreatedAt).Minutes(),
"message_count": len(thread.Messages),
"agent_count": len(thread.Participants),
"consensus_type": consensus.Type,
},
}
// Send to SLURP system
if err := sis.slurpClient.SubmitContextEvent(event); err != nil {
return nil, fmt.Errorf("failed to submit SLURP event: %w", err)
}
// Notify BZZZ network of event generation
sis.notifyEventGenerated(thread, event)
return event, nil
}
```
### 4.2 WHOOSH Orchestration Integration
#### GPT-4 Agent Registration with WHOOSH
```go
type WHOOSHIntegrationService struct {
whooshClient *whoosh.Client
agentRegistry map[string]*GPTAgent
}
func (wis *WHOOSHIntegrationService) RegisterGPTAgentWithWHOOSH(
agent *GPTAgent,
) error {
// Create WHOOSH agent registration
registration := &whoosh.AgentRegistration{
AgentID: agent.ID,
Type: "gpt_agent",
Role: string(agent.Role),
Capabilities: agent.Capabilities,
Metadata: map[string]interface{}{
"model": agent.Model,
"max_tokens": agent.TokenLimit,
"cost_per_token": getTokenCost(agent.Model),
"bzzz_address": fmt.Sprintf("bzzz://%s:%s@*", agent.ID, agent.Role),
},
Endpoints: whoosh.AgentEndpoints{
StatusCheck: fmt.Sprintf("http://mcp-server:8080/agents/%s/status", agent.ID),
TaskAssign: fmt.Sprintf("http://mcp-server:8080/agents/%s/tasks", agent.ID),
Collaborate: fmt.Sprintf("http://mcp-server:8080/agents/%s/collaborate", agent.ID),
},
HealthCheck: whoosh.HealthCheckConfig{
Interval: 30 * time.Second,
Timeout: 10 * time.Second,
Retries: 3,
},
}
// Submit registration
if err := wis.whooshClient.RegisterAgent(registration); err != nil {
return fmt.Errorf("failed to register with WHOOSH: %w", err)
}
// Start health reporting
go wis.reportAgentHealth(agent)
return nil
}
```
### 4.3 TGN (The Garden Network) Connectivity
#### Cross-Network Agent Discovery
```go
type TGNConnector struct {
tgnClient *tgn.Client
bzzzNetwork *BzzzNetwork
agentRegistry *AgentRegistry
}
func (tgn *TGNConnector) DiscoverCrossNetworkAgents(
query *AgentDiscoveryQuery,
) ([]*RemoteAgent, error) {
// Query TGN for agents matching criteria
tgnQuery := &tgn.AgentQuery{
Capabilities: query.RequiredCapabilities,
Role: query.Role,
Network: "bzzz",
Available: true,
}
remoteAgents, err := tgn.tgnClient.DiscoverAgents(tgnQuery)
if err != nil {
return nil, err
}
// Convert TGN agents to BZZZ addressable agents
var bzzzAgents []*RemoteAgent
for _, remote := range remoteAgents {
bzzzAgent := &RemoteAgent{
ID: remote.ID,
Network: remote.Network,
BzzzAddress: fmt.Sprintf("bzzz://%s:%s@%s/*",
remote.ID, remote.Role, remote.Network),
Capabilities: remote.Capabilities,
Endpoint: remote.Endpoint,
}
bzzzAgents = append(bzzzAgents, bzzzAgent)
}
return bzzzAgents, nil
}
```
---
## 5. Implementation Roadmap
### 5.1 Phase 1: Core MCP Infrastructure (Weeks 1-2)
#### Week 1: MCP Server Foundation
- [ ] Implement basic MCP server with tool registry
- [ ] Create OpenAI API integration wrapper
- [ ] Establish P2P node connection interface
- [ ] Basic agent lifecycle management
**Key Deliverables:**
- MCP server binary with basic tool definitions
- OpenAI GPT-4 integration module
- Agent registration and deregistration flows
#### Week 2: Protocol Tool Implementation
- [ ] Implement all six core bzzz:// protocol tools
- [ ] Add semantic addressing support
- [ ] Create pubsub message routing
- [ ] Basic conversation threading
**Key Deliverables:**
- Full protocol tool suite
- Address resolution system
- Message routing infrastructure
### 5.2 Phase 2: Agent Framework (Weeks 3-4)
#### Week 3: Agent Specializations
- [ ] Define role-based agent templates
- [ ] Implement reasoning prompt systems
- [ ] Create capability matching logic
- [ ] Agent memory management
#### Week 4: Collaboration Patterns
- [ ] Multi-agent conversation threading
- [ ] Consensus building algorithms
- [ ] Escalation rule engine
- [ ] Human intervention workflows
### 5.3 Phase 3: CHORUS Integration (Weeks 5-6)
#### Week 5: SLURP Integration
- [ ] Consensus-to-SLURP event generation
- [ ] Context relevance scoring
- [ ] Feedback loop implementation
- [ ] Performance optimization
#### Week 6: WHOOSH & TGN Integration
- [ ] Agent registration with WHOOSH
- [ ] Cross-network agent discovery
- [ ] Task orchestration bridging
- [ ] Network topology management
### 5.4 Phase 4: Production Readiness (Weeks 7-8)
#### Week 7: Monitoring & Cost Management
- [ ] OpenAI cost tracking and limits
- [ ] Performance monitoring dashboards
- [ ] Conversation analytics
- [ ] Agent efficiency metrics
#### Week 8: Testing & Deployment
- [ ] End-to-end integration testing
- [ ] Load testing with multiple agents
- [ ] Security auditing
- [ ] Production deployment automation
---
## 6. Technical Requirements
### 6.1 Infrastructure Requirements
#### Server Specifications
- **CPU**: 8+ cores for concurrent agent processing
- **RAM**: 32GB+ for conversation context management
- **Storage**: 1TB+ SSD for conversation history and logs
- **Network**: High-speed connection for P2P communication
#### Software Dependencies
- **Go 1.21+**: For BZZZ P2P integration
- **Node.js 18+**: For MCP server implementation
- **Docker**: For containerized deployment
- **PostgreSQL 14+**: For conversation persistence
### 6.2 Security Considerations
#### API Key Management
- OpenAI API keys stored in secure vault
- Per-agent API key rotation
- Usage monitoring and alerting
- Rate limiting and quotas
#### P2P Security
- Message signing and verification
- Agent authentication protocols
- Network access controls
- Audit logging
### 6.3 Cost Management
#### Token Usage Optimization
```go
type CostOptimizer struct {
tokenBudgets map[string]*TokenBudget
usageTracking *UsageTracker
costCalculator *CostCalculator
}
func (co *CostOptimizer) OptimizeConversation(thread *ConversationThread) {
// Compress context when approaching limits
if thread.EstimatedTokens() > thread.TokenBudget * 0.8 {
co.compressConversationHistory(thread)
}
// Use cheaper models for routine tasks
if thread.Complexity < ComplexityThreshold {
co.assignModel(thread, "gpt-4o-mini")
}
// Implement conversation summarization
if len(thread.Messages) > MaxMessagesBeforeSummary {
co.summarizeAndTruncate(thread)
}
}
```
---
## 7. Code Examples
### 7.1 MCP Server Implementation
```go
// pkg/mcp/server.go
package mcp
import (
"context"
"encoding/json"
"fmt"
"net/http"
"github.com/anthonyrawlins/bzzz/p2p"
"github.com/anthonyrawlins/bzzz/pubsub"
openai "github.com/sashabaranov/go-openai"
)
type McpServer struct {
p2pNode *p2p.Node
pubsub *pubsub.PubSub
openaiClient *openai.Client
agents map[string]*GPTAgent
tools map[string]ToolHandler
}
func NewMcpServer(apiKey string, node *p2p.Node, ps *pubsub.PubSub) *McpServer {
server := &McpServer{
p2pNode: node,
pubsub: ps,
openaiClient: openai.NewClient(apiKey),
agents: make(map[string]*GPTAgent),
tools: make(map[string]ToolHandler),
}
// Register protocol tools
server.registerProtocolTools()
return server
}
func (s *McpServer) registerProtocolTools() {
s.tools["bzzz_announce"] = s.handleBzzzAnnounce
s.tools["bzzz_lookup"] = s.handleBzzzLookup
s.tools["bzzz_get"] = s.handleBzzzGet
s.tools["bzzz_post"] = s.handleBzzzPost
s.tools["bzzz_thread"] = s.handleBzzzThread
s.tools["bzzz_subscribe"] = s.handleBzzzSubscribe
}
func (s *McpServer) handleBzzzAnnounce(params map[string]interface{}) (interface{}, error) {
agentID, ok := params["agent_id"].(string)
if !ok {
return nil, fmt.Errorf("agent_id is required")
}
role, ok := params["role"].(string)
if !ok {
return nil, fmt.Errorf("role is required")
}
// Create announcement message
announcement := map[string]interface{}{
"agent_id": agentID,
"role": role,
"capabilities": params["capabilities"],
"specialization": params["specialization"],
"max_tasks": params["max_tasks"],
"announced_at": time.Now(),
}
// Publish to BZZZ network
err := s.pubsub.PublishBzzzMessage(pubsub.CapabilityBcast, announcement)
if err != nil {
return nil, fmt.Errorf("failed to announce: %w", err)
}
return map[string]interface{}{
"status": "announced",
"message": fmt.Sprintf("Agent %s (%s) announced to network", agentID, role),
}, nil
}
func (s *McpServer) handleBzzzLookup(params map[string]interface{}) (interface{}, error) {
address, ok := params["semantic_address"].(string)
if !ok {
return nil, fmt.Errorf("semantic_address is required")
}
// Parse semantic address (bzzz://agent:role@project:task/path)
parsedAddr, err := parseSemanticAddress(address)
if err != nil {
return nil, fmt.Errorf("invalid semantic address: %w", err)
}
// Discover matching agents
agents := s.discoverAgents(parsedAddr, params["filter_criteria"])
return map[string]interface{}{
"address": address,
"matches": agents,
"count": len(agents),
}, nil
}
```
### 7.2 GPT-4 Agent Implementation
```go
// pkg/agents/gpt_agent.go
package agents
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
"github.com/anthonyrawlins/bzzz/pubsub"
)
type GPTAgent struct {
ID string
Role AgentRole
Model string
Client *openai.Client
SystemPrompt string
Memory *AgentMemory
CostTracker *CostTracker
// BZZZ Integration
PubSub *pubsub.PubSub
Logger *logging.HypercoreLog
}
func (agent *GPTAgent) ProcessCollaborativeTask(
task *repository.Task,
thread *ConversationThread,
) error {
// Build context from conversation history
context := agent.buildTaskContext(task, thread)
// Create GPT-4 request
messages := []openai.ChatCompletionMessage{
{
Role: openai.ChatMessageRoleSystem,
Content: agent.buildSystemPrompt(task, thread),
},
}
// Add conversation history
for _, msg := range thread.Messages {
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleUser,
Content: fmt.Sprintf("[%s]: %s", msg.From, msg.Content),
})
}
// Add current task context
messages = append(messages, openai.ChatCompletionMessage{
Role: openai.ChatMessageRoleUser,
Content: agent.formatTaskForGPT(task),
})
// Make GPT-4 request
resp, err := agent.Client.CreateChatCompletion(
context.Background(),
openai.ChatCompletionRequest{
Model: agent.Model,
Messages: messages,
MaxTokens: 2000,
Tools: agent.getAvailableTools(),
},
)
if err != nil {
return fmt.Errorf("GPT-4 request failed: %w", err)
}
// Process response and tool calls
return agent.processGPTResponse(resp, thread)
}
func (agent *GPTAgent) buildSystemPrompt(task *repository.Task, thread *ConversationThread) string {
basePrompt := agent.SystemPrompt
// Add role-specific context
roleContext := agent.getRoleSpecificContext(task)
// Add collaboration context
collabContext := fmt.Sprintf(
"\nYou are collaborating with %d other agents in thread '%s'.\n"+
"Current participants: %s\n"+
"Thread topic: %s\n"+
"Your role in this collaboration: %s\n",
len(thread.Participants)-1,
thread.ID,
getParticipantList(thread.Participants),
thread.Topic,
agent.Role,
)
// Add available tools context
toolsContext := "\nAvailable BZZZ tools:\n"
for toolName, tool := range agent.getAvailableTools() {
toolsContext += fmt.Sprintf("- %s: %s\n", toolName, tool.Function.Description)
}
return basePrompt + roleContext + collabContext + toolsContext
}
```
### 7.3 Conversation Threading
```go
// pkg/conversations/thread_manager.go
package conversations
type ThreadManager struct {
threads map[string]*ConversationThread
participants map[string][]string // agentID -> threadIDs
summaryEngine *SummaryEngine
escalationMgr *EscalationManager
}
func (tm *ThreadManager) CreateCollaborativeThread(
topic string,
task *repository.Task,
requiredRoles []AgentRole,
) (*ConversationThread, error) {
thread := &ConversationThread{
ID: generateThreadID(topic, task.Number),
Topic: topic,
State: ThreadStateActive,
CreatedAt: time.Now(),
SharedContext: map[string]interface{}{
"task": task,
"required_roles": requiredRoles,
},
}
// Find and invite agents
for _, role := range requiredRoles {
agents := tm.findAvailableAgentsByRole(role)
if len(agents) == 0 {
return nil, fmt.Errorf("no available agents for role: %s", role)
}
// Select best agent for this role
selectedAgent := tm.selectBestAgent(agents, task)
thread.Participants = append(thread.Participants, AgentParticipant{
AgentID: selectedAgent.ID,
Role: role,
Status: ParticipantStatusInvited,
})
}
// Initialize thread
tm.threads[thread.ID] = thread
// Send invitations
for _, participant := range thread.Participants {
if err := tm.inviteToThread(participant.AgentID, thread); err != nil {
fmt.Printf("Failed to invite agent %s: %v\n", participant.AgentID, err)
}
}
// Start thread monitoring
go tm.monitorThread(thread)
return thread, nil
}
func (tm *ThreadManager) PostMessage(
threadID string,
fromAgent string,
content string,
messageType MessageType,
) error {
thread, exists := tm.threads[threadID]
if !exists {
return fmt.Errorf("thread %s not found", threadID)
}
message := ThreadMessage{
ID: generateMessageID(),
From: fromAgent,
Content: content,
Type: messageType,
Timestamp: time.Now(),
}
thread.Messages = append(thread.Messages, message)
thread.LastActivity = time.Now()
// Notify all participants
for _, participant := range thread.Participants {
if participant.AgentID != fromAgent {
if err := tm.notifyParticipant(participant.AgentID, thread, message); err != nil {
fmt.Printf("Failed to notify %s: %v\n", participant.AgentID, err)
}
}
}
// Check for escalation conditions
if actions := tm.escalationMgr.CheckEscalation(thread); len(actions) > 0 {
tm.executeEscalationActions(thread, actions)
}
return nil
}
```
---
## 8. Success Metrics
### 8.1 Performance Metrics
- **Agent Response Time**: < 30 seconds for routine tasks
- **Collaboration Efficiency**: 40% reduction in task completion time
- **Consensus Success Rate**: > 85% of collaborative discussions reach consensus
- **Escalation Rate**: < 15% of threads require human intervention
### 8.2 Cost Metrics
- **Token Efficiency**: < $0.50 per task for routine tasks
- **Model Selection Accuracy**: > 90% appropriate model selection
- **Context Compression Ratio**: 70% reduction in token usage through compression
### 8.3 Quality Metrics
- **Code Review Accuracy**: > 95% critical issues detected
- **Documentation Completeness**: > 90% coverage of technical requirements
- **Architecture Consistency**: > 95% adherence to established patterns
---
## 9. Security and Compliance
### 9.1 Data Protection
- All conversation data encrypted at rest and in transit
- Agent memory isolation between different projects
- Automatic PII detection and redaction
- Configurable data retention policies
### 9.2 Access Control
- Role-based access to different agent capabilities
- Project-level agent permissions
- API key scoping and rotation
- Audit logging of all agent actions
### 9.3 Compliance Considerations
- GDPR compliance for European operations
- SOC 2 Type II compliance framework
- Regular security audits and penetration testing
- Incident response procedures for AI agent failures
---
This comprehensive design provides the foundation for implementing GPT-4 agents as first-class citizens in the BZZZ v2 distributed system, enabling sophisticated multi-agent collaboration while maintaining the security, performance, and cost-effectiveness required for production deployment.