Pre-cleanup snapshot - all current files

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
tony
2025-08-05 02:32:45 +10:00
parent 26079aa8da
commit 4511f4c801
32 changed files with 5072 additions and 0 deletions

View File

@@ -0,0 +1,995 @@
Heres a **clean, production-ready system prompt** for that agent:
---
**🛡️ System Prompt “Secrets Sentinel” Agent**
> **Role & Mission**:
> You are the **Secrets Sentinel**, an autonomous security agent tasked with **monitoring all incoming log entries** for any potential leaks of **API keys, passwords, tokens, or other sensitive credentials**. Your primary goal is to **detect and prevent secret exposure** before it propagates further through the system.
>
> **Core Responsibilities**:
>
> * **Scan all log streams in real-time** for:
>
> * API keys (common formats: AWS, GCP, Azure, etc.)
> * OAuth tokens
> * SSH keys
> * Passwords (plain text or encoded)
> * JWTs or other bearer tokens
> * Database connection strings
> * **Immediately flag** any suspicious entries.
> * **Classify severity** (e.g., HIGH AWS root key; MEDIUM temporary token).
> * **Sanitize or redact** leaked secrets before theyre written to persistent storage or shared further.
> * **Notify designated security channels or agents** of leaks, providing minimal necessary context.
>
> **Guidelines**:
>
> * Never expose the full secret in your alerts — redact most of it (e.g., `AKIA************XYZ`).
> * Be cautious of **false positives** (e.g., test data, dummy keys); err on the side of safety but include a “confidence score.”
> * Respect **privacy and operational integrity**: do not log or store the full value of any detected secret.
> * Assume the system may expand; be prepared to recognize **new secret formats** and learn from curator feedback.
>
> **Behavior Under Edge Cases**:
>
> * If unsure whether a string is a secret, flag it as **LOW severity** with a note for human review.
> * If you detect a high-severity leak, **trigger immediate alerts** and halt propagation of the compromised entry.
>
> **Your Output**:
>
> * A **structured alert** (JSON preferred) with:
>
> * `timestamp`
> * `source` (which log/agent)
> * `type` of suspected secret
> * `redacted_sample`
> * `confidence_score` (01)
> * `recommended_action` (e.g., “revoke key,” “rotate password,” “ignore dummy”)
>
> **Tone & Style**:
>
> * Precise, neutral, security-minded.
> * Avoid speculation beyond what you can confidently identify.
---
## 📂 **Version-Controlled `patterns.yaml` Format**
This lets you add/update/remove detection patterns **without touching code**.
```yaml
version: 1.2
last_updated: 2025-08-02
patterns:
AWS_ACCESS_KEY:
regex: "AKIA[0-9A-Z]{16}"
description: "AWS Access Key ID"
severity: HIGH
confidence: 0.99
active: true
AWS_SECRET_KEY:
regex: "(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]"
description: "AWS Secret Key"
severity: HIGH
confidence: 0.99
active: true
GITHUB_TOKEN:
regex: "gh[pousr]_[0-9A-Za-z]{36}"
description: "GitHub Personal Access Token"
severity: HIGH
confidence: 0.97
active: true
JWT:
regex: "eyJ[A-Za-z0-9_-]+?\\.[A-Za-z0-9._-]+?\\.[A-Za-z0-9._-]+"
description: "JSON Web Token"
severity: MEDIUM
confidence: 0.95
active: true
meta:
allow_feedback_learning: true
require_human_review_above_confidence: 0.8
```
**Advantages:**
- Regexes are editable without code changes.
- Can be versioned in Git for full audit trail.
- Can toggle `active: false` for deprecating broken rules.
---
## 🖼 **Flow Diagram (Secrets Sentinel)**
**Secrets Flow**
```
┌───────────────┐
Logs Stream →│ Secrets │
│ Sentinel │
└──────┬────────┘
┌─────────┼─────────┐
│ │
[Quarantine] [Sanitized Logs]
│ │
┌──────┴──────┐ ┌────┴─────┐
│High Severity│ │ Safe Data│
│Secrets Only │ │ Storage │
└──────┬──────┘ └────┬─────┘
│ │
┌────────┼─────────┐ │
│ Revocation Hooks │ │
│ (AWS, GitHub, │ │
│ Slack, etc.) │ │
└────────┬─────────┘ │
│ │
┌────┴─────┐ │
│ Webhooks │ │
│ Key Kill │ │
└────┬─────┘ │
┌─────────┼─────────┐
│ Feedback Loop │
│ (Curator/Human) │
└─────────┬─────────┘
┌──────┴──────┐
│ Meta-Learner│
│ (new regex) │
└──────┬──────┘
┌──────┴───────┐
│ patterns.yaml│
└──────────────┘
```
---
## 🧪 **Test Harness Script**
This script simulates log scanning, quarantining, and revocation.
```python
import yaml, json, re
from datetime import datetime
# --- Load patterns.yaml ---
with open("patterns.yaml", "r") as f:
patterns_config = yaml.safe_load(f)
PATTERNS = patterns_config["patterns"]
QUARANTINE = []
SANITIZED_LOGS = []
def redact(secret):
return secret[:4] + "*" * (len(secret) - 7) + secret[-3:]
def scan_log(log_line, log_id, source_agent):
alerts = []
for secret_type, props in PATTERNS.items():
if not props.get("active", True):
continue
match = re.search(props["regex"], log_line)
if match:
secret = match.group(0)
severity = props["severity"]
alert = {
"timestamp": datetime.utcnow().isoformat() + "Z",
"source_agent": source_agent,
"log_line_id": log_id,
"secret_type": secret_type,
"redacted_sample": redact(secret),
"confidence_score": props["confidence"],
"severity": severity,
"recommended_action": "Revoke key/rotate credentials" if severity == "HIGH" else "Review"
}
alerts.append(alert)
# Quarantine if severity is HIGH
if severity == "HIGH":
quarantine_log(log_line, f"High severity secret detected: {secret_type}")
trigger_revocation(secret_type, redact(secret))
return alerts
def quarantine_log(log_line, reason):
entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
QUARANTINE.append(entry)
print(f"[QUARANTINE] {reason}")
def trigger_revocation(secret_type, redacted_sample):
# Simulated webhook call
print(f"[REVOCATION] Simulated revocation triggered for {secret_type} ({redacted_sample})")
def process_logs(logs):
for i, log_line in enumerate(logs):
alerts = scan_log(log_line, f"log_{i}", "agent_demo")
if alerts:
print(json.dumps(alerts, indent=2))
else:
SANITIZED_LOGS.append(log_line)
# --- Test Run ---
sample_logs = [
"INFO User logged in successfully",
"WARNING Found AWS key AKIA1234567890ABCD in commit",
"DEBUG JWT detected eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.fake.fake"
]
process_logs(sample_logs)
print("\n--- Quarantine Store ---")
print(json.dumps(QUARANTINE, indent=2))
```
**What this does:**
- Reads `patterns.yaml`
- Scans logs, prints alerts, quarantines high-severity entries
- Simulates revocation calls for AWS/GitHub/Slack
- Keeps sanitized logs separate from quarantined logs
---
## ✅ Next Expansions (Optional)
- 📦 **Redis/DB backend** for QUARANTINE instead of memory.
- 📡 **Real webhook integrations** (AWS STS, GitHub API, Slack API).
- 🧠 **Feedback ingestion module** (e.g., curator submits: `"false_positive": "AWS_ACCESS_KEY"` → adjusts regex in `patterns.yaml`).
- 🔄 **Auto-replay from Hyperlog** so Sentinel can retroactively scan old logs with new regex rules.
---
🔥 **production-grade spec**.
---
## 📂 **1⃣ Feedback Ingestion Spec**
This defines how curators/humans give feedback to the Sentinel so it can **update its detection rules (patterns.yaml)** safely.
---
### 🔄 **Feedback Flow**
1. **Curator/Reviewer sees alert** → marks it as:
- `false_positive` (regex over-triggered)
- `missed_secret` (regex failed to detect)
- `uncertain` (needs better regex refinement)
2. **Feedback API** ingests the report:
```json
{
"alert_id": "log_345",
"secret_type": "AWS_ACCESS_KEY",
"feedback_type": "false_positive",
"evidence": "Key was dummy data: TESTKEY123",
"suggested_regex_fix": null
}
```
3. **Meta-Learner** updates rules:
- `false_positive` → adds **exceptions** (e.g., allowlist prefixes like `TESTKEY`).
- `missed_secret` → drafts **new regex** from evidence (using regex generator or LLM).
- Writes changes to **patterns.yaml** under `pending_review`.
4. **Security admin approves** before the new regex is marked `active: true`.
---
### 🧠 **Feedback Schema in YAML**
```yaml
pending_updates:
- regex_name: AWS_ACCESS_KEY
action: modify
new_regex: "AKIA[0-9A-Z]{16}(?!TESTKEY)"
confidence: 0.82
status: "pending human review"
submitted_by: curator_2
timestamp: 2025-08-02T12:40:00Z
```
✅ This keeps **audit trails** & allows **safe hot updates**.
---
## ⚙️ **2⃣ Real AWS/GitHub Webhook Payload Templates**
These are **example POST payloads** your Sentinel would send when it detects a leaked secret.
---
### 🔐 **AWS Access Key Revocation**
**Endpoint:**
`POST https://security.example.com/hooks/aws-revoke`
**Payload:**
```json
{
"event": "secret_leak_detected",
"secret_type": "AWS_ACCESS_KEY",
"redacted_key": "AKIA****XYZ",
"log_reference": "hyperlog:58321",
"recommended_action": "Revoke IAM access key immediately",
"severity": "HIGH",
"timestamp": "2025-08-02T12:45:00Z"
}
```
➡ Your security automation would call AWS CLI or IAM API:
```bash
aws iam update-access-key --access-key-id <redacted> --status Inactive
aws iam delete-access-key --access-key-id <redacted>
```
---
### 🐙 **GitHub Token Revocation**
**Endpoint:**
`POST https://security.example.com/hooks/github-revoke`
**Payload:**
```json
{
"event": "secret_leak_detected",
"secret_type": "GITHUB_TOKEN",
"redacted_key": "ghp_****abcd",
"repository": "repo-name",
"log_reference": "hyperlog:58322",
"severity": "HIGH",
"recommended_action": "Invalidate GitHub token via API",
"timestamp": "2025-08-02T12:46:00Z"
}
```
➡ This would tie into GitHubs [token-scanning API](https://docs.github.com/en/developers/overview/secret-scanning) or use PAT revocation.
---
### 💬 **Slack Token Revocation**
**Endpoint:**
`POST https://security.example.com/hooks/slack-revoke`
**Payload:**
```json
{
"event": "secret_leak_detected",
"secret_type": "SLACK_TOKEN",
"redacted_key": "xoxb****hjk",
"workspace": "company-slack",
"log_reference": "hyperlog:58323",
"severity": "HIGH",
"recommended_action": "Revoke Slack bot/user token",
"timestamp": "2025-08-02T12:47:00Z"
}
```
➡ Slack Admin API can be used to **revoke** or **rotate**.
---
## 📡 **3⃣ Redis or PostgreSQL Quarantine Store**
Switching from memory to **persistent storage** means quarantined logs survive restarts.
---
### ✅ **Redis Option (Fast, Volatile)**
```python
import redis, json
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
def quarantine_log(log_line, reason):
entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
r.lpush("quarantine", json.dumps(entry))
print(f"[QUARANTINE] Stored in Redis: {reason}")
```
- 🏎 **Pros:** Fast, easy to scale.
- ⚠️ **Cons:** Volatile unless persisted (RDB/AOF).
---
### ✅ **PostgreSQL Option (Auditable, Durable)**
**Schema:**
```sql
CREATE TABLE quarantine (
id SERIAL PRIMARY KEY,
timestamp TIMESTAMPTZ NOT NULL,
reason TEXT NOT NULL,
log_line TEXT NOT NULL,
reviewed BOOLEAN DEFAULT FALSE
);
```
**Python Insert:**
```python
import psycopg2
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()
def quarantine_log(log_line, reason):
entry_time = datetime.utcnow().isoformat() + "Z"
cursor.execute(
"INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
(entry_time, reason, log_line)
)
conn.commit()
print(f"[QUARANTINE] Stored in PostgreSQL: {reason}")
```
**Postgres is better for long-term auditing** — you can run reports like:
- “How many AWS keys leaked this month?”
- “Which agents generated the most HIGH-severity quarantines?”
---
## 🚀 **Whats Next?**
We now have:
**Detection → Redaction → Quarantine → Revocation → Feedback → Pattern Evolution**
**patterns.yaml** for versioned regex
**Webhooks** for real-time secret revocation
**Persistent quarantine store** (Redis or Postgres)
---
## 🛡️ **Expanded System Prompt for Secrets Sentinel**
> **Role & Mission**:
> You are the **Secrets Sentinel**, a security-focused agent monitoring all log streams for potential leaks of sensitive information (API keys, passwords, tokens, etc.). Your mission: **detect**, **sanitize**, and **prevent** secret exposure while keeping operations secure and auditable.
>
> **Core Responsibilities**:
> ✅ Scan **all log entries** for API keys, passwords, JWTs, database strings, and private keys.
> ✅ **Redact** any detected secrets in-flight before writing them to storage or forwarding.
> ✅ **Generate structured alerts** for each detection with relevant metadata.
> ✅ **Quarantine** log lines that contain **high-severity** secrets (so they arent distributed further).
> ✅ Support **continuous learning** by flagging uncertain cases for human/curator review.
>
> **Secret Detection Targets**:
>
> - **Cloud Keys** (AWS, GCP, Azure, etc.)
>
> - **OAuth Tokens** (Bearer, Slack, Discord, GitHub, etc.)
>
> - **JWTs** (header.payload.signature format)
>
> - **SSH Private Keys** (`-----BEGIN PRIVATE KEY-----`)
>
> - **Database Connection Strings** (Postgres, MySQL, MongoDB, etc.)
>
> - **Generic Passwords** (detected from common prefixes, e.g. `pwd=`, `password:`).
>
>
> **Detection Rules**:
>
> - Use **regex patterns** for known key formats.
>
> - Score detections with a **confidence metric** (01).
>
> - If a string doesnt fully match, classify as **LOW confidence** for review.
>
>
> **Redaction Policy**:
>
> - Always redact most of the secret (`AKIA************XYZ`).
>
> - Never store or transmit the **full secret**.
>
>
> **Alert Format (JSON)**:
>
> ```json
> {
> "timestamp": "2025-08-02T10:12:34Z",
> "source_agent": "agent_42",
> "log_line_id": "hyperlog:134593",
> "secret_type": "AWS_ACCESS_KEY",
> "redacted_sample": "AKIA********XYZ",
> "confidence_score": 0.95,
> "severity": "HIGH",
> "recommended_action": "Revoke AWS key immediately and rotate credentials"
> }
> ```
>
> **Behavior Under Edge Cases**:
>
> - If unsure: flag as LOW severity with `"recommended_action": "Manual review"`.
>
> - If a secret is clearly fake (like `TESTKEY123`), still alert but tag as `test_credential: true`.
>
>
> **Tone & Style**:
>
> - Precise, security-minded, and concise in reporting.
>
---
## 📚 **Regex Patterns Library (Starter Set)**
```python
REGEX_PATTERNS = {
"AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}",
"AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]",
"GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}",
"GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}",
"SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}",
"JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+",
"SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----",
"GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?",
"DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+"
}
```
---
## 🛠 **Python Skeleton Implementation**
```python
import re
import json
from datetime import datetime
REGEX_PATTERNS = {
"AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}",
"AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]",
"GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}",
"GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}",
"SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}",
"JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+",
"SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----",
"GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?",
"DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+"
}
def redact(secret: str) -> str:
"""Redact a secret leaving only first and last 3 chars."""
return secret[:4] + "*" * (len(secret) - 7) + secret[-3:]
def scan_log_line(log_line: str, log_id: str, source_agent: str):
alerts = []
for secret_type, pattern in REGEX_PATTERNS.items():
match = re.search(pattern, log_line)
if match:
secret = match.group(0)
alert = {
"timestamp": datetime.utcnow().isoformat() + "Z",
"source_agent": source_agent,
"log_line_id": log_id,
"secret_type": secret_type,
"redacted_sample": redact(secret),
"confidence_score": 0.95,
"severity": "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM",
"recommended_action": "Revoke key/rotate credentials"
}
alerts.append(alert)
return alerts
# Example usage:
log = "User pushed code with AWS key: AKIA1234567890ABCD"
alerts = scan_log_line(log, "hyperlog:42", "agent_7")
print(json.dumps(alerts, indent=2))
```
---
## 🚨 **Optional Extensions**
-**Automatic Quarantine** → If severity=HIGH, forward to a “quarantine pipeline” (prevent further log distribution).
-**Secret Revocation Hooks** → Webhooks/scripts to auto-disable compromised keys (AWS IAM revoke, GitHub token reset, etc.).
-**Curator Feedback Loop** → If many false positives occur, agents/curators can “vote” on regex quality → improves future detection.
---
👉 Do you want me to:
- **📡 Add “quarantine mode” logic** (e.g. isolate log lines and mark them unsafe)?
- **🔗 Draft a webhook design** for automatic secret revocation (AWS/GitHub/Slack)?
- **🧠 Write a “meta-prompt” for this agent** so it can _learn new secret formats_ over time from curator feedback?
Heres the **full build-out** with all three requested additions:
## 🛡 **Secrets Sentinel: Extended Prompt**
> **Role & Mission**:
> You are the **Secrets Sentinel**, a security agent tasked with scanning all logs for leaked secrets. You **detect**, **redact**, **quarantine**, and optionally **revoke** compromised credentials. You also **evolve your detection rules** over time by learning from curator and human feedback.
>
> **Extended Responsibilities**:
> ✅ **Quarantine:** When you find a **HIGH severity** secret, isolate the entire log entry from normal processing so it doesnt spread.
> ✅ **Revocation Hooks:** Trigger a webhook or automation script to disable the compromised key (e.g., AWS IAM revoke).
> ✅ **Adaptive Learning:** If you get “false positive” or “missed secret” feedback, update or request updates to your regex rules and detection logic.
---
### 1⃣ **Quarantine Mode Logic**
Add this to the **Python skeleton**:
```python
QUARANTINE_STORE = [] # This could be a Redis list, DB table, etc.
def quarantine_log(log_line: str, reason: str):
"""Move a sensitive log line to quarantine for review."""
quarantine_entry = {
"timestamp": datetime.utcnow().isoformat() + "Z",
"reason": reason,
"log_line": log_line
}
QUARANTINE_STORE.append(quarantine_entry)
print(f"[QUARANTINE] Log quarantined: {reason}")
return quarantine_entry
def scan_log_line(log_line: str, log_id: str, source_agent: str):
alerts = []
for secret_type, pattern in REGEX_PATTERNS.items():
match = re.search(pattern, log_line)
if match:
secret = match.group(0)
severity = "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM"
alert = {
"timestamp": datetime.utcnow().isoformat() + "Z",
"source_agent": source_agent,
"log_line_id": log_id,
"secret_type": secret_type,
"redacted_sample": redact(secret),
"confidence_score": 0.95,
"severity": severity,
"recommended_action": "Revoke key/rotate credentials"
}
alerts.append(alert)
if severity == "HIGH":
quarantine_log(log_line, f"High severity secret detected: {secret_type}")
return alerts
```
**Now, any HIGH-severity find triggers quarantine.**
---
### 2⃣ **Webhook Design for Secret Revocation**
Well use a **simple webhook dispatcher** that calls different revocation endpoints depending on the secret type.
```python
import requests
REVOCATION_HOOKS = {
"AWS_ACCESS_KEY": "https://security.example.com/hooks/aws-revoke",
"GITHUB_TOKEN": "https://security.example.com/hooks/github-revoke",
"SLACK_TOKEN": "https://security.example.com/hooks/slack-revoke"
}
def trigger_revocation(secret_type: str, redacted_sample: str):
"""Send webhook request to revoke compromised credentials."""
if secret_type in REVOCATION_HOOKS:
payload = {
"secret_type": secret_type,
"sample": redacted_sample,
"reason": "Detected secret leak"
}
try:
r = requests.post(REVOCATION_HOOKS[secret_type], json=payload, timeout=5)
if r.status_code == 200:
print(f"[REVOCATION] Successfully triggered revocation for {secret_type}")
else:
print(f"[REVOCATION] Failed revocation for {secret_type}: {r.status_code}")
except Exception as e:
print(f"[REVOCATION ERROR] {e}")
```
Then, in the alert loop:
```python
if severity == "HIGH":
quarantine_log(log_line, f"High severity secret detected: {secret_type}")
trigger_revocation(secret_type, redact(secret))
```
**Now, if the sentinel finds an AWS key or GitHub token, it can hit the right webhook to revoke it immediately.**
---
### 3⃣ **Meta-Prompt for Learning New Secret Formats**
This allows the Sentinel to **expand its detection library** dynamically.
---
**🧠 Adaptive Learning Meta-Prompt**
> **Role**: You are the “Meta-Learner” function of Secrets Sentinel.
>
> **Mission**: Continuously expand the Sentinels knowledge of new secret formats and detection rules.
>
> **Responsibilities**:
>
> * Accept **feedback reports** from curators or human reviewers (false positives, missed secrets).
> * If multiple missed secrets share a pattern, propose a **new regex** (or modify an existing one).
> * Version-control detection rules (e.g., store regex patterns in a JSON or YAML file with version numbers).
> * Generate a **confidence score** for new rules before promoting them to active use.
> * Flag uncertain cases for human approval.
>
> **Behavior**:
>
> * If false positives keep happening for a regex → weaken or add exception clauses.
> * If missed secrets are reported → extract examples, infer format, draft new regex, test on past logs.
>
> **Output**:
>
> ```json
> {
> "action": "add|update|remove",
> "regex_name": "NEW_PROVIDER_KEY",
> "regex_pattern": "XXX",
> "confidence": 0.87,
> "status": "pending human review"
> }
> ```
>
> **Goal**: Turn curator/human feedback into a **self-evolving secret-detection engine**.
---
### 🧩 How It All Fits
**Secrets Sentinel core** = Detect + Redact + Quarantine
**Revocation Hooks** = Automated security response
**Meta-Learning** = Regex patterns evolve over time
---
## 📜 **1⃣ Migration Script: Redis → PostgreSQL**
This script will migrate existing quarantined log entries from **Redis** to **Postgres**.
```python
import redis, json, psycopg2
from datetime import datetime
# Redis config
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
# Postgres config
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()
def migrate_quarantine():
count = 0
while True:
entry_json = r.rpop("quarantine") # pop oldest entry from Redis
if not entry_json:
break
entry = json.loads(entry_json)
cursor.execute(
"INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
(entry["timestamp"], entry["reason"], entry["log_line"])
)
count += 1
conn.commit()
print(f"[MIGRATION] Moved {count} quarantined entries from Redis → PostgreSQL")
if __name__ == "__main__":
migrate_quarantine()
```
**Run once** after Postgres is set up — empties Redis queue into the durable DB.
---
## 🖥 **2⃣ Admin Dashboard Spec**
**Purpose:** A web UI to manage the Sentinels security pipeline.
---
### 🎯 **Core Features**
**Quarantine Browser**
- Paginated view of all quarantined logs
- Search/filter by `secret_type`, `source_agent`, `date`, `status`
- Mark quarantined logs as **reviewed** or **false alarm**
**Regex Rules Manager**
- Lists all regexes from `patterns.yaml`
- Add / update / deactivate rules via UI
- Shows `pending_updates` flagged by the Meta-Learner for human approval
**Revocation Status Board**
- See which secrets triggered revocations
- Status of revocation hooks (success/fail)
**Metrics Dashboard**
- Charts: “Secrets Detected Over Time”, “Top Sources of Leaks”
- KPIs: # HIGH severity secrets this month, # rules updated, # false positives
---
### 🏗 **Tech Stack Suggestion**
- **Backend:** FastAPI (Python)
- **Frontend:** React + Tailwind
- **DB:** PostgreSQL for quarantine + rules history
- **Auth:** OAuth (GitHub/Google) + RBAC (only security admins can approve regex changes)
---
### 🔌 **Endpoints**
```
GET /api/quarantine → list quarantined entries
POST /api/quarantine/review → mark entry as reviewed
GET /api/rules → list regex patterns
POST /api/rules/update → update or add a regex
GET /api/revocations → list revocation events
```
---
### 🖥 **Mock Dashboard Layout**
- **Left Nav:** Quarantine | Rules | Revocations | Metrics
- **Main Panel:**
- Data tables with sorting/filtering
- Inline editors for regex rules
- Approve/Reject buttons for pending regex updates
✅ Basically a **security control room** for Sentinel.
---
## 🤖 **3⃣ Meta-Curator AI Prompt**
This agent reviews Sentinels work and **tunes it automatically**.
---
### **Meta-Curator: System Prompt**
> **Role & Mission:**
> You are the **Meta-Curator**, a supervisory AI responsible for reviewing the **Secrets Sentinels** detections, regex updates, and feedback reports.
>
> **Core Responsibilities:**
> ✅ **Audit alerts** Look for false positives, duplicates, or missed leaks by cross-checking Sentinel outputs.
> ✅ **Review regex proposals** When Sentinel drafts new regex rules, decide if theyre:
>
> - ✅ Approved (safe to activate)
>
> - ❌ Rejected (too broad or incorrect)
>
> - 🕒 Deferred (needs human review)
> ✅ **Tune detection thresholds** Adjust `confidence` or `severity` on patterns based on outcomes.
> ✅ **Generate new rules** If multiple missed secrets share a format, draft a regex and submit to humans for approval.
> ✅ **Report upstream** Summarize changes to security admins weekly.
>
---
### **Behavior Guidelines**
- **Conservative by default:** Dont auto-approve regexes unless confidence > 0.95.
- **Keep auditability:** Every decision (approve/reject) is logged in the hyperlog.
- **Respect human overrides:** Never overwrite a regex that a human explicitly locked.
---
### **Example Meta-Curator Output**
```json
{
"action": "approve_regex",
"regex_name": "GITLAB_TOKEN",
"regex_pattern": "glpat-[0-9A-Za-z\\-_]{20}",
"confidence": 0.97,
"decision_reason": "Validated against 12 quarantined examples, no false positives found.",
"timestamp": "2025-08-02T13:45:00Z"
}
```
✅ This meta-agent is the **brains of the rules layer** — keeps Sentinel evolving, but under control.
---
## 🚀 **Now You Have:**
**Migration Path** → Redis → PostgreSQL
**Admin Dashboard Spec** → complete with endpoints & layout
**Meta-Curator Prompt** → the agent that “manages the manager”
---