Files
chorus-services/modules/shhh/secrets-sentinel.md
tony 4511f4c801 Pre-cleanup snapshot - all current files
🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-05 02:32:45 +10:00

29 KiB
Raw Blame History

Heres a clean, production-ready system prompt for that agent:


🛡️ System Prompt “Secrets Sentinel” Agent

Role & Mission: You are the Secrets Sentinel, an autonomous security agent tasked with monitoring all incoming log entries for any potential leaks of API keys, passwords, tokens, or other sensitive credentials. Your primary goal is to detect and prevent secret exposure before it propagates further through the system.

Core Responsibilities:

  • Scan all log streams in real-time for:

    • API keys (common formats: AWS, GCP, Azure, etc.)
    • OAuth tokens
    • SSH keys
    • Passwords (plain text or encoded)
    • JWTs or other bearer tokens
    • Database connection strings
  • Immediately flag any suspicious entries.

  • Classify severity (e.g., HIGH AWS root key; MEDIUM temporary token).

  • Sanitize or redact leaked secrets before theyre written to persistent storage or shared further.

  • Notify designated security channels or agents of leaks, providing minimal necessary context.

Guidelines:

  • Never expose the full secret in your alerts — redact most of it (e.g., AKIA************XYZ).
  • Be cautious of false positives (e.g., test data, dummy keys); err on the side of safety but include a “confidence score.”
  • Respect privacy and operational integrity: do not log or store the full value of any detected secret.
  • Assume the system may expand; be prepared to recognize new secret formats and learn from curator feedback.

Behavior Under Edge Cases:

  • If unsure whether a string is a secret, flag it as LOW severity with a note for human review.
  • If you detect a high-severity leak, trigger immediate alerts and halt propagation of the compromised entry.

Your Output:

  • A structured alert (JSON preferred) with:

    • timestamp
    • source (which log/agent)
    • type of suspected secret
    • redacted_sample
    • confidence_score (01)
    • recommended_action (e.g., “revoke key,” “rotate password,” “ignore dummy”)

Tone & Style:

  • Precise, neutral, security-minded.
  • Avoid speculation beyond what you can confidently identify.

📂 Version-Controlled patterns.yaml Format

This lets you add/update/remove detection patterns without touching code.

version: 1.2
last_updated: 2025-08-02

patterns:
  AWS_ACCESS_KEY:
    regex: "AKIA[0-9A-Z]{16}"
    description: "AWS Access Key ID"
    severity: HIGH
    confidence: 0.99
    active: true

  AWS_SECRET_KEY:
    regex: "(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]"
    description: "AWS Secret Key"
    severity: HIGH
    confidence: 0.99
    active: true

  GITHUB_TOKEN:
    regex: "gh[pousr]_[0-9A-Za-z]{36}"
    description: "GitHub Personal Access Token"
    severity: HIGH
    confidence: 0.97
    active: true

  JWT:
    regex: "eyJ[A-Za-z0-9_-]+?\\.[A-Za-z0-9._-]+?\\.[A-Za-z0-9._-]+"
    description: "JSON Web Token"
    severity: MEDIUM
    confidence: 0.95
    active: true

meta:
  allow_feedback_learning: true
  require_human_review_above_confidence: 0.8

Advantages:

  • Regexes are editable without code changes.

  • Can be versioned in Git for full audit trail.

  • Can toggle active: false for deprecating broken rules.


🖼 Flow Diagram (Secrets Sentinel)

Secrets Flow

                ┌───────────────┐
   Logs Stream →│ Secrets       │
                │ Sentinel      │
                └──────┬────────┘
                       │
             ┌─────────┼─────────┐
             │                   │
       [Quarantine]        [Sanitized Logs]
             │                   │
      ┌──────┴──────┐       ┌────┴─────┐
      │High Severity│       │ Safe Data│
      │Secrets Only │       │ Storage  │
      └──────┬──────┘       └────┬─────┘
             │                   │
    ┌────────┼─────────┐         │
    │ Revocation Hooks │         │
    │ (AWS, GitHub,    │         │
    │ Slack, etc.)     │         │
    └────────┬─────────┘         │
             │                   │
        ┌────┴─────┐              │
        │ Webhooks │              │
        │ Key Kill │              │
        └────┬─────┘              │
             │
   ┌─────────┼─────────┐
   │ Feedback Loop     │
   │ (Curator/Human)   │
   └─────────┬─────────┘
             │
      ┌──────┴──────┐
      │ Meta-Learner│
      │ (new regex) │
      └──────┬──────┘
             │
      ┌──────┴───────┐
      │ patterns.yaml│
      └──────────────┘

🧪 Test Harness Script

This script simulates log scanning, quarantining, and revocation.

import yaml, json, re
from datetime import datetime

# --- Load patterns.yaml ---
with open("patterns.yaml", "r") as f:
    patterns_config = yaml.safe_load(f)

PATTERNS = patterns_config["patterns"]

QUARANTINE = []
SANITIZED_LOGS = []

def redact(secret):
    return secret[:4] + "*" * (len(secret) - 7) + secret[-3:]

def scan_log(log_line, log_id, source_agent):
    alerts = []
    for secret_type, props in PATTERNS.items():
        if not props.get("active", True):
            continue
        match = re.search(props["regex"], log_line)
        if match:
            secret = match.group(0)
            severity = props["severity"]
            alert = {
                "timestamp": datetime.utcnow().isoformat() + "Z",
                "source_agent": source_agent,
                "log_line_id": log_id,
                "secret_type": secret_type,
                "redacted_sample": redact(secret),
                "confidence_score": props["confidence"],
                "severity": severity,
                "recommended_action": "Revoke key/rotate credentials" if severity == "HIGH" else "Review"
            }
            alerts.append(alert)

            # Quarantine if severity is HIGH
            if severity == "HIGH":
                quarantine_log(log_line, f"High severity secret detected: {secret_type}")
                trigger_revocation(secret_type, redact(secret))
    return alerts

def quarantine_log(log_line, reason):
    entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
    QUARANTINE.append(entry)
    print(f"[QUARANTINE] {reason}")

def trigger_revocation(secret_type, redacted_sample):
    # Simulated webhook call
    print(f"[REVOCATION] Simulated revocation triggered for {secret_type} ({redacted_sample})")

def process_logs(logs):
    for i, log_line in enumerate(logs):
        alerts = scan_log(log_line, f"log_{i}", "agent_demo")
        if alerts:
            print(json.dumps(alerts, indent=2))
        else:
            SANITIZED_LOGS.append(log_line)

# --- Test Run ---
sample_logs = [
    "INFO User logged in successfully",
    "WARNING Found AWS key AKIA1234567890ABCD in commit",
    "DEBUG JWT detected eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.fake.fake"
]

process_logs(sample_logs)

print("\n--- Quarantine Store ---")
print(json.dumps(QUARANTINE, indent=2))

What this does:

  • Reads patterns.yaml

  • Scans logs, prints alerts, quarantines high-severity entries

  • Simulates revocation calls for AWS/GitHub/Slack

  • Keeps sanitized logs separate from quarantined logs


Next Expansions (Optional)

  • 📦 Redis/DB backend for QUARANTINE instead of memory.

  • 📡 Real webhook integrations (AWS STS, GitHub API, Slack API).

  • 🧠 Feedback ingestion module (e.g., curator submits: "false_positive": "AWS_ACCESS_KEY" → adjusts regex in patterns.yaml).

  • 🔄 Auto-replay from Hyperlog so Sentinel can retroactively scan old logs with new regex rules.


🔥 production-grade spec.


📂 1 Feedback Ingestion Spec

This defines how curators/humans give feedback to the Sentinel so it can update its detection rules (patterns.yaml) safely.


🔄 Feedback Flow

  1. Curator/Reviewer sees alert → marks it as:

    • false_positive (regex over-triggered)

    • missed_secret (regex failed to detect)

    • uncertain (needs better regex refinement)

  2. Feedback API ingests the report:

{
  "alert_id": "log_345",
  "secret_type": "AWS_ACCESS_KEY",
  "feedback_type": "false_positive",
  "evidence": "Key was dummy data: TESTKEY123",
  "suggested_regex_fix": null
}
  1. Meta-Learner updates rules:
  • false_positive → adds exceptions (e.g., allowlist prefixes like TESTKEY).

  • missed_secret → drafts new regex from evidence (using regex generator or LLM).

  • Writes changes to patterns.yaml under pending_review.

  1. Security admin approves before the new regex is marked active: true.

🧠 Feedback Schema in YAML

pending_updates:
  - regex_name: AWS_ACCESS_KEY
    action: modify
    new_regex: "AKIA[0-9A-Z]{16}(?!TESTKEY)"
    confidence: 0.82
    status: "pending human review"
    submitted_by: curator_2
    timestamp: 2025-08-02T12:40:00Z

This keeps audit trails & allows safe hot updates.


⚙️ 2 Real AWS/GitHub Webhook Payload Templates

These are example POST payloads your Sentinel would send when it detects a leaked secret.


🔐 AWS Access Key Revocation

Endpoint:
POST https://security.example.com/hooks/aws-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "AWS_ACCESS_KEY",
  "redacted_key": "AKIA****XYZ",
  "log_reference": "hyperlog:58321",
  "recommended_action": "Revoke IAM access key immediately",
  "severity": "HIGH",
  "timestamp": "2025-08-02T12:45:00Z"
}

➡ Your security automation would call AWS CLI or IAM API:

aws iam update-access-key --access-key-id <redacted> --status Inactive
aws iam delete-access-key --access-key-id <redacted>

🐙 GitHub Token Revocation

Endpoint:
POST https://security.example.com/hooks/github-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "GITHUB_TOKEN",
  "redacted_key": "ghp_****abcd",
  "repository": "repo-name",
  "log_reference": "hyperlog:58322",
  "severity": "HIGH",
  "recommended_action": "Invalidate GitHub token via API",
  "timestamp": "2025-08-02T12:46:00Z"
}

➡ This would tie into GitHubs token-scanning API or use PAT revocation.


💬 Slack Token Revocation

Endpoint:
POST https://security.example.com/hooks/slack-revoke

Payload:

{
  "event": "secret_leak_detected",
  "secret_type": "SLACK_TOKEN",
  "redacted_key": "xoxb****hjk",
  "workspace": "company-slack",
  "log_reference": "hyperlog:58323",
  "severity": "HIGH",
  "recommended_action": "Revoke Slack bot/user token",
  "timestamp": "2025-08-02T12:47:00Z"
}

➡ Slack Admin API can be used to revoke or rotate.


📡 3 Redis or PostgreSQL Quarantine Store

Switching from memory to persistent storage means quarantined logs survive restarts.


Redis Option (Fast, Volatile)

import redis, json
r = redis.Redis(host='localhost', port=6379, decode_responses=True)

def quarantine_log(log_line, reason):
    entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
    r.lpush("quarantine", json.dumps(entry))
    print(f"[QUARANTINE] Stored in Redis: {reason}")
  • 🏎 Pros: Fast, easy to scale.

  • ⚠️ Cons: Volatile unless persisted (RDB/AOF).


PostgreSQL Option (Auditable, Durable)

Schema:

CREATE TABLE quarantine (
    id SERIAL PRIMARY KEY,
    timestamp TIMESTAMPTZ NOT NULL,
    reason TEXT NOT NULL,
    log_line TEXT NOT NULL,
    reviewed BOOLEAN DEFAULT FALSE
);

Python Insert:

import psycopg2

conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()

def quarantine_log(log_line, reason):
    entry_time = datetime.utcnow().isoformat() + "Z"
    cursor.execute(
        "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
        (entry_time, reason, log_line)
    )
    conn.commit()
    print(f"[QUARANTINE] Stored in PostgreSQL: {reason}")

Postgres is better for long-term auditing — you can run reports like:

  • “How many AWS keys leaked this month?”

  • “Which agents generated the most HIGH-severity quarantines?”


🚀 Whats Next?

We now have:
Detection → Redaction → Quarantine → Revocation → Feedback → Pattern Evolution
patterns.yaml for versioned regex
Webhooks for real-time secret revocation
Persistent quarantine store (Redis or Postgres)


🛡️ Expanded System Prompt for Secrets Sentinel

Role & Mission:
You are the Secrets Sentinel, a security-focused agent monitoring all log streams for potential leaks of sensitive information (API keys, passwords, tokens, etc.). Your mission: detect, sanitize, and prevent secret exposure while keeping operations secure and auditable.

Core Responsibilities:
Scan all log entries for API keys, passwords, JWTs, database strings, and private keys.
Redact any detected secrets in-flight before writing them to storage or forwarding.
Generate structured alerts for each detection with relevant metadata.
Quarantine log lines that contain high-severity secrets (so they arent distributed further).
Support continuous learning by flagging uncertain cases for human/curator review.

Secret Detection Targets:

  • Cloud Keys (AWS, GCP, Azure, etc.)

  • OAuth Tokens (Bearer, Slack, Discord, GitHub, etc.)

  • JWTs (header.payload.signature format)

  • SSH Private Keys (-----BEGIN PRIVATE KEY-----)

  • Database Connection Strings (Postgres, MySQL, MongoDB, etc.)

  • Generic Passwords (detected from common prefixes, e.g. pwd=, password:).

Detection Rules:

  • Use regex patterns for known key formats.

  • Score detections with a confidence metric (01).

  • If a string doesnt fully match, classify as LOW confidence for review.

Redaction Policy:

  • Always redact most of the secret (AKIA************XYZ).

  • Never store or transmit the full secret.

Alert Format (JSON):

{
  "timestamp": "2025-08-02T10:12:34Z",
  "source_agent": "agent_42",
  "log_line_id": "hyperlog:134593",
  "secret_type": "AWS_ACCESS_KEY",
  "redacted_sample": "AKIA********XYZ",
  "confidence_score": 0.95,
  "severity": "HIGH",
  "recommended_action": "Revoke AWS key immediately and rotate credentials"
}

Behavior Under Edge Cases:

  • If unsure: flag as LOW severity with "recommended_action": "Manual review".

  • If a secret is clearly fake (like TESTKEY123), still alert but tag as test_credential: true.

Tone & Style:

  • Precise, security-minded, and concise in reporting.

📚 Regex Patterns Library (Starter Set)

REGEX_PATTERNS = {
    "AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}",
    "AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]",
    "GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}",
    "GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}",
    "SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}",
    "JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+",
    "SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----",
    "GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?",
    "DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+"
}

🛠 Python Skeleton Implementation

import re
import json
from datetime import datetime

REGEX_PATTERNS = {
    "AWS_ACCESS_KEY": r"AKIA[0-9A-Z]{16}",
    "AWS_SECRET_KEY": r"(?i)aws(.{0,20})?(?-i)['\"][0-9a-zA-Z\/+]{40}['\"]",
    "GCP_API_KEY": r"AIza[0-9A-Za-z\\-_]{35}",
    "GITHUB_TOKEN": r"gh[pousr]_[0-9A-Za-z]{36}",
    "SLACK_TOKEN": r"xox[baprs]-[0-9A-Za-z-]{10,48}",
    "JWT": r"eyJ[A-Za-z0-9_-]+?\.[A-Za-z0-9._-]+?\.[A-Za-z0-9._-]+",
    "SSH_PRIVATE_KEY": r"-----BEGIN (RSA|DSA|EC|OPENSSH) PRIVATE KEY-----",
    "GENERIC_PASSWORD": r"(?:password|pwd|pass|secret)\s*[:=]\s*['\"]?[^\s'\";]+['\"]?",
    "DB_CONN_STRING": r"(postgres|mysql|mongodb|mssql|redis):\/\/[^\s]+"
}

def redact(secret: str) -> str:
    """Redact a secret leaving only first and last 3 chars."""
    return secret[:4] + "*" * (len(secret) - 7) + secret[-3:]

def scan_log_line(log_line: str, log_id: str, source_agent: str):
    alerts = []
    for secret_type, pattern in REGEX_PATTERNS.items():
        match = re.search(pattern, log_line)
        if match:
            secret = match.group(0)
            alert = {
                "timestamp": datetime.utcnow().isoformat() + "Z",
                "source_agent": source_agent,
                "log_line_id": log_id,
                "secret_type": secret_type,
                "redacted_sample": redact(secret),
                "confidence_score": 0.95,
                "severity": "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM",
                "recommended_action": "Revoke key/rotate credentials"
            }
            alerts.append(alert)
    return alerts

# Example usage:
log = "User pushed code with AWS key: AKIA1234567890ABCD"
alerts = scan_log_line(log, "hyperlog:42", "agent_7")
print(json.dumps(alerts, indent=2))

🚨 Optional Extensions

  • Automatic Quarantine → If severity=HIGH, forward to a “quarantine pipeline” (prevent further log distribution).

  • Secret Revocation Hooks → Webhooks/scripts to auto-disable compromised keys (AWS IAM revoke, GitHub token reset, etc.).

  • Curator Feedback Loop → If many false positives occur, agents/curators can “vote” on regex quality → improves future detection.


👉 Do you want me to:

  • 📡 Add “quarantine mode” logic (e.g. isolate log lines and mark them unsafe)?

  • 🔗 Draft a webhook design for automatic secret revocation (AWS/GitHub/Slack)?

  • 🧠 Write a “meta-prompt” for this agent so it can learn new secret formats over time from curator feedback?

Heres the full build-out with all three requested additions:

🛡 Secrets Sentinel: Extended Prompt

Role & Mission: You are the Secrets Sentinel, a security agent tasked with scanning all logs for leaked secrets. You detect, redact, quarantine, and optionally revoke compromised credentials. You also evolve your detection rules over time by learning from curator and human feedback.

Extended Responsibilities: Quarantine: When you find a HIGH severity secret, isolate the entire log entry from normal processing so it doesnt spread. Revocation Hooks: Trigger a webhook or automation script to disable the compromised key (e.g., AWS IAM revoke). Adaptive Learning: If you get “false positive” or “missed secret” feedback, update or request updates to your regex rules and detection logic.


1 Quarantine Mode Logic

Add this to the Python skeleton:

QUARANTINE_STORE = []  # This could be a Redis list, DB table, etc.

def quarantine_log(log_line: str, reason: str):
    """Move a sensitive log line to quarantine for review."""
    quarantine_entry = {
        "timestamp": datetime.utcnow().isoformat() + "Z",
        "reason": reason,
        "log_line": log_line
    }
    QUARANTINE_STORE.append(quarantine_entry)
    print(f"[QUARANTINE] Log quarantined: {reason}")
    return quarantine_entry

def scan_log_line(log_line: str, log_id: str, source_agent: str):
    alerts = []
    for secret_type, pattern in REGEX_PATTERNS.items():
        match = re.search(pattern, log_line)
        if match:
            secret = match.group(0)
            severity = "HIGH" if "PRIVATE_KEY" in secret_type or "AWS" in secret_type else "MEDIUM"
            alert = {
                "timestamp": datetime.utcnow().isoformat() + "Z",
                "source_agent": source_agent,
                "log_line_id": log_id,
                "secret_type": secret_type,
                "redacted_sample": redact(secret),
                "confidence_score": 0.95,
                "severity": severity,
                "recommended_action": "Revoke key/rotate credentials"
            }
            alerts.append(alert)
            if severity == "HIGH":
                quarantine_log(log_line, f"High severity secret detected: {secret_type}")
    return alerts

Now, any HIGH-severity find triggers quarantine.


2 Webhook Design for Secret Revocation

Well use a simple webhook dispatcher that calls different revocation endpoints depending on the secret type.

import requests

REVOCATION_HOOKS = {
    "AWS_ACCESS_KEY": "https://security.example.com/hooks/aws-revoke",
    "GITHUB_TOKEN": "https://security.example.com/hooks/github-revoke",
    "SLACK_TOKEN": "https://security.example.com/hooks/slack-revoke"
}

def trigger_revocation(secret_type: str, redacted_sample: str):
    """Send webhook request to revoke compromised credentials."""
    if secret_type in REVOCATION_HOOKS:
        payload = {
            "secret_type": secret_type,
            "sample": redacted_sample,
            "reason": "Detected secret leak"
        }
        try:
            r = requests.post(REVOCATION_HOOKS[secret_type], json=payload, timeout=5)
            if r.status_code == 200:
                print(f"[REVOCATION] Successfully triggered revocation for {secret_type}")
            else:
                print(f"[REVOCATION] Failed revocation for {secret_type}: {r.status_code}")
        except Exception as e:
            print(f"[REVOCATION ERROR] {e}")

Then, in the alert loop:

if severity == "HIGH":
    quarantine_log(log_line, f"High severity secret detected: {secret_type}")
    trigger_revocation(secret_type, redact(secret))

Now, if the sentinel finds an AWS key or GitHub token, it can hit the right webhook to revoke it immediately.


3 Meta-Prompt for Learning New Secret Formats

This allows the Sentinel to expand its detection library dynamically.


🧠 Adaptive Learning Meta-Prompt

Role: You are the “Meta-Learner” function of Secrets Sentinel.

Mission: Continuously expand the Sentinels knowledge of new secret formats and detection rules.

Responsibilities:

  • Accept feedback reports from curators or human reviewers (false positives, missed secrets).
  • If multiple missed secrets share a pattern, propose a new regex (or modify an existing one).
  • Version-control detection rules (e.g., store regex patterns in a JSON or YAML file with version numbers).
  • Generate a confidence score for new rules before promoting them to active use.
  • Flag uncertain cases for human approval.

Behavior:

  • If false positives keep happening for a regex → weaken or add exception clauses.
  • If missed secrets are reported → extract examples, infer format, draft new regex, test on past logs.

Output:

{
  "action": "add|update|remove",
  "regex_name": "NEW_PROVIDER_KEY",
  "regex_pattern": "XXX",
  "confidence": 0.87,
  "status": "pending human review"
}

Goal: Turn curator/human feedback into a self-evolving secret-detection engine.


🧩 How It All Fits

Secrets Sentinel core = Detect + Redact + Quarantine Revocation Hooks = Automated security response Meta-Learning = Regex patterns evolve over time


📜 1 Migration Script: Redis → PostgreSQL

This script will migrate existing quarantined log entries from Redis to Postgres.

import redis, json, psycopg2
from datetime import datetime

# Redis config
r = redis.Redis(host='localhost', port=6379, decode_responses=True)

# Postgres config
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()

def migrate_quarantine():
    count = 0
    while True:
        entry_json = r.rpop("quarantine")  # pop oldest entry from Redis
        if not entry_json:
            break
        entry = json.loads(entry_json)
        cursor.execute(
            "INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
            (entry["timestamp"], entry["reason"], entry["log_line"])
        )
        count += 1
    conn.commit()
    print(f"[MIGRATION] Moved {count} quarantined entries from Redis → PostgreSQL")

if __name__ == "__main__":
    migrate_quarantine()

Run once after Postgres is set up — empties Redis queue into the durable DB.


🖥 2 Admin Dashboard Spec

Purpose: A web UI to manage the Sentinels security pipeline.


🎯 Core Features

Quarantine Browser

  • Paginated view of all quarantined logs

  • Search/filter by secret_type, source_agent, date, status

  • Mark quarantined logs as reviewed or false alarm

Regex Rules Manager

  • Lists all regexes from patterns.yaml

  • Add / update / deactivate rules via UI

  • Shows pending_updates flagged by the Meta-Learner for human approval

Revocation Status Board

  • See which secrets triggered revocations

  • Status of revocation hooks (success/fail)

Metrics Dashboard

  • Charts: “Secrets Detected Over Time”, “Top Sources of Leaks”

  • KPIs: # HIGH severity secrets this month, # rules updated, # false positives


🏗 Tech Stack Suggestion

  • Backend: FastAPI (Python)

  • Frontend: React + Tailwind

  • DB: PostgreSQL for quarantine + rules history

  • Auth: OAuth (GitHub/Google) + RBAC (only security admins can approve regex changes)


🔌 Endpoints

GET  /api/quarantine         → list quarantined entries
POST /api/quarantine/review  → mark entry as reviewed
GET  /api/rules              → list regex patterns
POST /api/rules/update       → update or add a regex
GET  /api/revocations        → list revocation events

🖥 Mock Dashboard Layout

  • Left Nav: Quarantine | Rules | Revocations | Metrics

  • Main Panel:

    • Data tables with sorting/filtering

    • Inline editors for regex rules

    • Approve/Reject buttons for pending regex updates

Basically a security control room for Sentinel.


🤖 3 Meta-Curator AI Prompt

This agent reviews Sentinels work and tunes it automatically.


Meta-Curator: System Prompt

Role & Mission:
You are the Meta-Curator, a supervisory AI responsible for reviewing the Secrets Sentinels detections, regex updates, and feedback reports.

Core Responsibilities:
Audit alerts Look for false positives, duplicates, or missed leaks by cross-checking Sentinel outputs.
Review regex proposals When Sentinel drafts new regex rules, decide if theyre:

  • Approved (safe to activate)

  • Rejected (too broad or incorrect)

  • 🕒 Deferred (needs human review)
    Tune detection thresholds Adjust confidence or severity on patterns based on outcomes.
    Generate new rules If multiple missed secrets share a format, draft a regex and submit to humans for approval.
    Report upstream Summarize changes to security admins weekly.


Behavior Guidelines

  • Conservative by default: Dont auto-approve regexes unless confidence > 0.95.

  • Keep auditability: Every decision (approve/reject) is logged in the hyperlog.

  • Respect human overrides: Never overwrite a regex that a human explicitly locked.


Example Meta-Curator Output

{
  "action": "approve_regex",
  "regex_name": "GITLAB_TOKEN",
  "regex_pattern": "glpat-[0-9A-Za-z\\-_]{20}",
  "confidence": 0.97,
  "decision_reason": "Validated against 12 quarantined examples, no false positives found.",
  "timestamp": "2025-08-02T13:45:00Z"
}

This meta-agent is the brains of the rules layer — keeps Sentinel evolving, but under control.


🚀 Now You Have:

Migration Path → Redis → PostgreSQL
Admin Dashboard Spec → complete with endpoints & layout
Meta-Curator Prompt → the agent that “manages the manager”