🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
16 KiB
🔥 Excellent — let’s push this all the way into a production-grade spec.
📂 1️⃣ Feedback Ingestion Spec
This defines how curators/humans give feedback to the Sentinel so it can update its detection rules (patterns.yaml) safely.
🔄 Feedback Flow
-
Curator/Reviewer sees alert → marks it as:
false_positive(regex over-triggered)missed_secret(regex failed to detect)uncertain(needs better regex refinement)
-
Feedback API ingests the report:
{
"alert_id": "log_345",
"secret_type": "AWS_ACCESS_KEY",
"feedback_type": "false_positive",
"evidence": "Key was dummy data: TESTKEY123",
"suggested_regex_fix": null
}
- Meta-Learner updates rules:
false_positive→ adds exceptions (e.g., allowlist prefixes likeTESTKEY).missed_secret→ drafts new regex from evidence (using regex generator or LLM).- Writes changes to patterns.yaml under
pending_review.
- Security admin approves before the new regex is marked
active: true.
🧠 Feedback Schema in YAML
pending_updates:
- regex_name: AWS_ACCESS_KEY
action: modify
new_regex: "AKIA[0-9A-Z]{16}(?!TESTKEY)"
confidence: 0.82
status: "pending human review"
submitted_by: curator_2
timestamp: 2025-08-02T12:40:00Z
✅ This keeps audit trails & allows safe hot updates.
⚙️ 2️⃣ Real AWS/GitHub Webhook Payload Templates
These are example POST payloads your Sentinel would send when it detects a leaked secret.
🔐 AWS Access Key Revocation
Endpoint:
POST https://security.example.com/hooks/aws-revoke
Payload:
{
"event": "secret_leak_detected",
"secret_type": "AWS_ACCESS_KEY",
"redacted_key": "AKIA****XYZ",
"log_reference": "hyperlog:58321",
"recommended_action": "Revoke IAM access key immediately",
"severity": "HIGH",
"timestamp": "2025-08-02T12:45:00Z"
}
➡ Your security automation would call AWS CLI or IAM API:
aws iam update-access-key --access-key-id <redacted> --status Inactive
aws iam delete-access-key --access-key-id <redacted>
🐙 GitHub Token Revocation
Endpoint:
POST https://security.example.com/hooks/github-revoke
Payload:
{
"event": "secret_leak_detected",
"secret_type": "GITHUB_TOKEN",
"redacted_key": "ghp_****abcd",
"repository": "repo-name",
"log_reference": "hyperlog:58322",
"severity": "HIGH",
"recommended_action": "Invalidate GitHub token via API",
"timestamp": "2025-08-02T12:46:00Z"
}
➡ This would tie into GitHub’s token-scanning API or use PAT revocation.
💬 Slack Token Revocation
Endpoint:
POST https://security.example.com/hooks/slack-revoke
Payload:
{
"event": "secret_leak_detected",
"secret_type": "SLACK_TOKEN",
"redacted_key": "xoxb****hjk",
"workspace": "company-slack",
"log_reference": "hyperlog:58323",
"severity": "HIGH",
"recommended_action": "Revoke Slack bot/user token",
"timestamp": "2025-08-02T12:47:00Z"
}
➡ Slack Admin API can be used to revoke or rotate.
📡 3️⃣ Redis or PostgreSQL Quarantine Store
Switching from memory to persistent storage means quarantined logs survive restarts.
✅ Redis Option (Fast, Volatile)
import redis, json
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
def quarantine_log(log_line, reason):
entry = {"timestamp": datetime.utcnow().isoformat() + "Z", "reason": reason, "log_line": log_line}
r.lpush("quarantine", json.dumps(entry))
print(f"[QUARANTINE] Stored in Redis: {reason}")
- 🏎 Pros: Fast, easy to scale.
- ⚠️ Cons: Volatile unless persisted (RDB/AOF).
✅ PostgreSQL Option (Auditable, Durable)
Schema:
CREATE TABLE quarantine (
id SERIAL PRIMARY KEY,
timestamp TIMESTAMPTZ NOT NULL,
reason TEXT NOT NULL,
log_line TEXT NOT NULL,
reviewed BOOLEAN DEFAULT FALSE
);
Python Insert:
import psycopg2
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()
def quarantine_log(log_line, reason):
entry_time = datetime.utcnow().isoformat() + "Z"
cursor.execute(
"INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
(entry_time, reason, log_line)
)
conn.commit()
print(f"[QUARANTINE] Stored in PostgreSQL: {reason}")
✅ Postgres is better for long-term auditing — you can run reports like:
- “How many AWS keys leaked this month?”
- “Which agents generated the most HIGH-severity quarantines?”
We now have: ✅ Detection → Redaction → Quarantine → Revocation → Feedback → Pattern Evolution ✅ patterns.yaml for versioned regex ✅ Webhooks for real-time secret revocation ✅ Persistent quarantine store (Redis or Postgres)
📜 1️⃣ Migration Script: Redis → PostgreSQL
This script will migrate existing quarantined log entries from Redis to Postgres.
import redis, json, psycopg2
from datetime import datetime
# Redis config
r = redis.Redis(host='localhost', port=6379, decode_responses=True)
# Postgres config
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()
def migrate_quarantine():
count = 0
while True:
entry_json = r.rpop("quarantine") # pop oldest entry from Redis
if not entry_json:
break
entry = json.loads(entry_json)
cursor.execute(
"INSERT INTO quarantine (timestamp, reason, log_line) VALUES (%s, %s, %s)",
(entry["timestamp"], entry["reason"], entry["log_line"])
)
count += 1
conn.commit()
print(f"[MIGRATION] Moved {count} quarantined entries from Redis → PostgreSQL")
if __name__ == "__main__":
migrate_quarantine()
✅ Run once after Postgres is set up — empties Redis queue into the durable DB.
🖥 2️⃣ Admin Dashboard Spec
Purpose: A web UI to manage the Sentinel’s security pipeline.
🎯 Core Features
✅ Quarantine Browser
- Paginated view of all quarantined logs
- Search/filter by
secret_type,source_agent,date,status - Mark quarantined logs as reviewed or false alarm
✅ Regex Rules Manager
- Lists all regexes from
patterns.yaml - Add / update / deactivate rules via UI
- Shows
pending_updatesflagged by the Meta-Learner for human approval
✅ Revocation Status Board
- See which secrets triggered revocations
- Status of revocation hooks (success/fail)
✅ Metrics Dashboard
- Charts: “Secrets Detected Over Time”, “Top Sources of Leaks”
- KPIs: # HIGH severity secrets this month, # rules updated, # false positives
🏗 Tech Stack Suggestion
- Backend: FastAPI (Python)
- Frontend: React + Tailwind
- DB: PostgreSQL for quarantine + rules history
- Auth: OAuth (GitHub/Google) + RBAC (only security admins can approve regex changes)
🔌 Endpoints
GET /api/quarantine → list quarantined entries
POST /api/quarantine/review → mark entry as reviewed
GET /api/rules → list regex patterns
POST /api/rules/update → update or add a regex
GET /api/revocations → list revocation events
🖥 Mock Dashboard Layout
-
Left Nav: Quarantine | Rules | Revocations | Metrics
-
Main Panel:
- Data tables with sorting/filtering
- Inline editors for regex rules
- Approve/Reject buttons for pending regex updates
✅ Basically a security control room for Sentinel.
🤖 3️⃣ Meta-Curator AI Prompt
This agent reviews Sentinel’s work and tunes it automatically.
Meta-Curator: System Prompt
Role & Mission: You are the Meta-Curator, a supervisory AI responsible for reviewing the Secrets Sentinel’s detections, regex updates, and feedback reports.
Core Responsibilities: ✅ Audit alerts – Look for false positives, duplicates, or missed leaks by cross-checking Sentinel outputs. ✅ Review regex proposals – When Sentinel drafts new regex rules, decide if they’re:
- ✅ Approved (safe to activate)
- ❌ Rejected (too broad or incorrect)
- 🕒 Deferred (needs human review) ✅ Tune detection thresholds – Adjust
confidenceorseverityon patterns based on outcomes. ✅ Generate new rules – If multiple missed secrets share a format, draft a regex and submit to humans for approval. ✅ Report upstream – Summarize changes to security admins weekly.
Behavior Guidelines
- Conservative by default: Don’t auto-approve regexes unless confidence > 0.95.
- Keep auditability: Every decision (approve/reject) is logged in the hyperlog.
- Respect human overrides: Never overwrite a regex that a human explicitly locked.
Example Meta-Curator Output
{
"action": "approve_regex",
"regex_name": "GITLAB_TOKEN",
"regex_pattern": "glpat-[0-9A-Za-z\\-_]{20}",
"confidence": 0.97,
"decision_reason": "Validated against 12 quarantined examples, no false positives found.",
"timestamp": "2025-08-02T13:45:00Z"
}
✅ This meta-agent is the brains of the rules layer — keeps Sentinel evolving, but under control.
🚀 Now You Have:
✅ Migration Path → Redis → PostgreSQL ✅ Admin Dashboard Spec → complete with endpoints & layout ✅ Meta-Curator Prompt → the agent that “manages the manager”
Alright — here’s the next batch to lock this into a real, buildable system.
📂 1️⃣ patterns_history Table Schema
This tracks every regex change ever made — who/what made it, why, and when.
CREATE TABLE patterns_history (
id SERIAL PRIMARY KEY,
regex_name TEXT NOT NULL,
old_regex TEXT,
new_regex TEXT,
action TEXT CHECK (action IN ('add', 'update', 'remove')),
confidence NUMERIC(3,2),
status TEXT CHECK (status IN ('approved', 'pending', 'rejected')),
submitted_by TEXT NOT NULL,
approved_by TEXT,
decision_reason TEXT,
timestamp TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP
);
✅ What this gives you:
-
Full audit trail (critical for security compliance).
-
You can run queries like:
- “Show all regex changes made by Meta-Curator vs. humans.”
- “List all rules rejected in the last 90 days.”
🖼 2️⃣ Admin Dashboard Wireframes
Goal: show your devs exactly what to build — no ambiguity.
🔒 Dashboard Home
------------------------------------------------------
| [Sentinel Logo] Secrets Sentinel Dashboard |
------------------------------------------------------
| Quarantine | Rules | Revocations | Metrics | Admin |
------------------------------------------------------
| Welcome back, Security Admin! |
| |
| ▢ 32 Quarantined logs waiting review |
| ▢ 4 Pending regex updates |
| ▢ 2 Failed revocation hooks |
------------------------------------------------------
🗄 Quarantine View
------------------------------------------------------
| Quarantine Logs |
------------------------------------------------------
| Search: [______________] [Filter ▼] |
------------------------------------------------------
| Log ID | Secret Type | Severity | Status |
------------------------------------------------------
| log_4287 | AWS_ACCESS_KEY| HIGH | PENDING |
| log_4288 | JWT | MEDIUM | REVIEWED|
| log_4289 | SSH_KEY | HIGH | PENDING |
------------------------------------------------------
[ View Details ] [ Mark as Reviewed ] [ Delete ]
Clicking “View Details” → shows full log snippet (with redacted secret).
📜 Regex Manager
------------------------------------------------------
| Regex Rules |
------------------------------------------------------
| Name | Regex Pattern | Active |
------------------------------------------------------
| AWS_ACCESS_KEY | AKIA[0-9A-Z]{16} | ✔ |
| JWT | eyJ[A-Za-z0-9_-]+?\.[…] | ✔ |
| SLACK_TOKEN | xox[baprs]-[0-9A-Za-z-]{10,48} | ✔ |
------------------------------------------------------
[ Add New Regex ] [ View History ]
Clicking View History → pulls from patterns_history.
📊 Metrics View
-
Line Chart: “Secrets Detected Over Time”
-
Bar Chart: “Secrets by Type” (AWS, GitHub, JWT, etc.)
-
KPIs:
- 🔴 High Severity Leaks: 12 this week
- 🟢 Regex Accuracy: 94%
⚙️ 3️⃣ FastAPI Skeleton
Here’s the starter code for your dev team to run with.
from fastapi import FastAPI, Depends
from pydantic import BaseModel
from typing import List
import psycopg2, json
app = FastAPI(title="Secrets Sentinel Dashboard API")
# --- Database Setup ---
conn = psycopg2.connect("dbname=sentinel user=postgres password=secret")
cursor = conn.cursor()
# --- Models ---
class QuarantineEntry(BaseModel):
id: int
timestamp: str
reason: str
log_line: str
reviewed: bool
class RegexRule(BaseModel):
regex_name: str
regex_pattern: str
severity: str
confidence: float
active: bool
# --- Endpoints ---
@app.get("/quarantine", response_model=List[QuarantineEntry])
def get_quarantine():
cursor.execute("SELECT id, timestamp, reason, log_line, reviewed FROM quarantine")
rows = cursor.fetchall()
return [QuarantineEntry(id=r[0], timestamp=str(r[1]), reason=r[2], log_line=r[3], reviewed=r[4]) for r in rows]
@app.post("/quarantine/review/{entry_id}")
def review_quarantine(entry_id: int):
cursor.execute("UPDATE quarantine SET reviewed=true WHERE id=%s", (entry_id,))
conn.commit()
return {"status": "ok", "message": f"Quarantine entry {entry_id} marked reviewed"}
@app.get("/rules", response_model=List[RegexRule])
def get_rules():
# Load from patterns.yaml
with open("patterns.yaml", "r") as f:
patterns = json.load(f) if f.read().strip().startswith("{") else {}
rules = []
for name, rule in patterns.get("patterns", {}).items():
rules.append(RegexRule(
regex_name=name,
regex_pattern=rule["regex"],
severity=rule["severity"],
confidence=rule["confidence"],
active=rule["active"]
))
return rules
@app.post("/rules/update")
def update_rule(rule: RegexRule):
# Append to patterns_history table
cursor.execute("""
INSERT INTO patterns_history (regex_name, old_regex, new_regex, action, confidence, status, submitted_by)
VALUES (%s, %s, %s, 'update', %s, 'pending', 'admin')
""", (rule.regex_name, None, rule.regex_pattern, rule.confidence))
conn.commit()
return {"status": "ok", "message": f"Regex {rule.regex_name} queued for update"}
✅ Why this skeleton works:
- REST endpoints for Quarantine, Rules, History.
- Uses Postgres for persistence.
- Reads from
patterns.yamlfor active rules.
🚀 Now You Have:
✅ A Postgres schema for regex change history. ✅ Wireframes for the admin dashboard. ✅ A FastAPI skeleton your team can expand into a full API/UI stack.