anthonyrawlins 2915ee9aa7 🎉 Complete CCLI Integration: Phase 4 (MCP Server Updates)
IMPLEMENTATION COMPLETE: Successfully integrated Google Gemini CLI as
mixed agent type in Hive distributed AI platform.

## Phase 4 Achievements:
 Enhanced MCP tools with CLI agent support
 Added hive_register_cli_agent, hive_get_cli_agents tools
 Updated HiveClient interface for CLI agent management
 Mixed agent type coordination via MCP
 Comprehensive error handling and user feedback

## Key Features:
- CLI agent registration with health checks
- Mixed agent dashboard (🤖 Ollama +  CLI)
- Predefined agent quick setup (walnut-gemini, ironwood-gemini)
- SSH-based task execution with connection pooling
- Complete backward compatibility

## Technical Stack:
- MCP Tools: CLI agent management interface
- HiveClient: Enhanced API client with CLI support
- TypeScript: Full type safety for mixed agent operations
- Error Handling: Comprehensive CLI connectivity validation

## Production Ready:
 16 MCP tools with CLI agent coverage
 Mixed agent type task coordination
 Health monitoring and statistics collection
 Robust SSH execution with timeout handling
 Integration tested and validated

Ready for hybrid AI orchestration: 5 Ollama + 2 CLI agents

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-10 12:11:27 +10:00
2025-07-10 12:11:27 +10:00

🐝 Hive: Unified Distributed AI Orchestration Platform

Hive is a comprehensive distributed AI orchestration platform that consolidates the best components from our distributed AI development ecosystem into a single, powerful system for coordinating AI agents, managing workflows, and monitoring cluster performance.

🎯 What is Hive?

Hive combines the power of:

  • 🔄 McPlan: n8n workflow → MCP bridge execution
  • 🤖 Distributed AI Development: Multi-agent coordination and monitoring
  • 📊 Real-time Performance Monitoring: Live metrics and alerting
  • 🎨 Visual Workflow Editor: React Flow-based n8n-compatible designer
  • 🌐 Multi-Agent Orchestration: Intelligent task distribution across specialized AI agents

🚀 Quick Start

Prerequisites

  • Docker and Docker Compose
  • 8GB+ RAM recommended
  • Access to Ollama agents on your network

1. Launch Hive

cd /home/tony/AI/projects/hive
./scripts/start_hive.sh

2. Access Services

3. Default Credentials

  • Grafana: admin / hiveadmin
  • Database: hive / hivepass

🏗️ Architecture Overview

┌─────────────────────────────────────────────────────────────────┐
│                        HIVE ORCHESTRATOR                        │
├─────────────────────────────────────────────────────────────────┤
│  Frontend Dashboard (React + TypeScript)                       │
│  ├── 🎛️  Agent Management & Monitoring                         │
│  ├── 🎨  Visual Workflow Editor (n8n-compatible)               │
│  ├── 📊  Real-time Performance Dashboard                       │
│  ├── 📋  Task Queue & Project Management                       │
│  └── ⚙️   System Configuration & Settings                      │
├─────────────────────────────────────────────────────────────────┤
│  Backend Services (FastAPI + Python)                           │
│  ├── 🧠  Hive Coordinator (unified orchestration)              │
│  ├── 🔄  Workflow Engine (n8n + MCP bridge)                    │
│  ├── 📡  Agent Communication (compressed protocols)            │
│  ├── 📈  Performance Monitor (metrics & alerts)                │
│  ├── 🔒  Authentication & Authorization                        │
│  └── 💾  Data Storage (workflows, configs, metrics)           │
├─────────────────────────────────────────────────────────────────┤
│  Agent Network (Ollama + Specialized Models)                   │
│  ├── 🏗️  ACACIA (Infrastructure & DevOps)                     │
│  ├── 🌐  WALNUT (Full-Stack Development)                       │
│  ├── ⚙️   IRONWOOD (Backend & Optimization)                    │
│  ├── 🧪  ROSEWOOD (QA & Testing)                               │
│  ├── 📱  OAK (iOS/macOS Development)                           │
│  ├── 🔄  TULLY (Mobile & Game Development)                     │
│  └── 🔌  [Expandable Agent Pool]                               │
└─────────────────────────────────────────────────────────────────┘

🤖 Configured Agents

Agent Endpoint Specialization Model Capabilities
ACACIA 192.168.1.72:11434 Infrastructure & DevOps deepseek-r1:7b DevOps, Architecture, Deployment
WALNUT 192.168.1.27:11434 Full-Stack Development starcoder2:15b Frontend, Backend, UI Design
IRONWOOD 192.168.1.113:11434 Backend Specialist deepseek-coder-v2 APIs, Optimization, Databases
ROSEWOOD 192.168.1.132:11434 QA & Testing deepseek-r1:8b Testing, Code Review, QA
OAK oak.local:11434 iOS/macOS Development mistral-nemo Swift, Xcode, App Store
TULLY Tullys-MacBook-Air.local:11434 Mobile & Game Dev mistral-nemo Unity, Mobile Apps

📊 Core Features

🎨 Visual Workflow Editor

  • n8n-compatible visual workflow designer
  • Drag & drop node-based interface
  • Real-time execution monitoring
  • Template library for common workflows
  • MCP integration for AI tool conversion

🤖 Multi-Agent Orchestration

  • Intelligent task distribution based on agent capabilities
  • Real-time health monitoring of all agents
  • Load balancing across available agents
  • Performance tracking with TPS and response time metrics
  • Capability-based routing for optimal task assignment

📈 Performance Monitoring

  • Real-time dashboards with live metrics
  • Prometheus integration for metrics collection
  • Grafana dashboards for visualization
  • Automated alerting for system issues
  • Historical analytics and trend analysis

🔧 Project Management

  • Multi-project coordination with agent assignment
  • Task dependencies and workflow management
  • Quality control with multi-agent code review
  • Approval workflows for security and compliance
  • Template-based project initialization

🛠️ Management Commands

Service Management

# View all service logs
docker-compose logs -f

# View specific service logs
docker-compose logs -f hive-backend

# Restart services
docker-compose restart

# Stop all services
docker-compose down

# Rebuild and restart
docker-compose up -d --build

Development

# Access backend shell
docker-compose exec hive-backend bash

# Access database
docker-compose exec postgres psql -U hive -d hive

# View Redis data
docker-compose exec redis redis-cli

Monitoring

# Check service health
curl http://localhost:8000/health

# Get system status
curl http://localhost:8000/api/status

# View Prometheus metrics
curl http://localhost:8000/api/metrics

📁 Project Structure

hive/
├── 📋 PROJECT_PLAN.md              # Comprehensive project plan
├── 🏗️ ARCHITECTURE.md             # Technical architecture details
├── 🚀 README.md                   # This file
├── 🔄 docker-compose.yml          # Development environment
│
├── backend/                        # Python FastAPI backend
│   ├── app/
│   │   ├── core/                   # Core orchestration services
│   │   ├── api/                    # REST API endpoints
│   │   ├── models/                 # Database models
│   │   └── services/               # Business logic
│   ├── migrations/                 # Database migrations
│   └── requirements.txt            # Python dependencies
│
├── frontend/                       # React TypeScript frontend
│   ├── src/
│   │   ├── components/             # React components
│   │   ├── stores/                 # State management
│   │   └── services/               # API clients
│   └── package.json                # Node.js dependencies
│
├── config/                         # Configuration files
│   ├── hive.yaml                   # Main Hive configuration
│   ├── agents/                     # Agent-specific configs
│   ├── workflows/                  # Workflow templates
│   └── monitoring/                 # Monitoring configs
│
└── scripts/                        # Utility scripts
    ├── start_hive.sh               # Main startup script
    └── migrate_from_existing.py    # Migration script

🔧 Configuration

Agent Configuration

Edit config/hive.yaml to add or modify agents:

hive:
  agents:
    my_new_agent:
      name: "My New Agent"
      endpoint: "http://192.168.1.100:11434"
      model: "llama2"
      specialization: "general"
      capabilities: ["coding", "analysis"]
      hardware:
        gpu_type: "NVIDIA RTX 4090"
        vram_gb: 24
        cpu_cores: 16
      performance_targets:
        min_tps: 10
        max_response_time: 30

Workflow Templates

Add workflow templates in config/workflows/:

templates:
  my_workflow:
    agents: ["walnut", "ironwood"]
    stages: ["design", "implement", "test"]
    description: "Custom workflow template"

📈 Monitoring & Metrics

Key Metrics Tracked

  • Agent Performance: TPS, response time, availability
  • System Health: CPU, memory, GPU utilization
  • Workflow Execution: Success rate, execution time
  • Task Distribution: Queue length, assignment efficiency

Grafana Dashboards

  • Hive Overview: Cluster-wide metrics and status
  • Agent Performance: Individual agent details
  • Workflow Analytics: Execution trends and patterns
  • System Health: Infrastructure monitoring

Alerts

  • Agent Down: Critical alert when agent becomes unavailable
  • High Resource Usage: Warning when thresholds exceeded
  • Slow Response: Alert for degraded performance
  • Execution Failures: Notification of workflow failures

🔮 Migration from Existing Projects

Hive was created by consolidating these existing projects:

Migrated Components

  • distributed-ai-dev: Agent coordination and monitoring
  • McPlan: Workflow engine and visual editor
  • n8n-integration: Workflow templates and patterns

📊 Migration Results

  • 6 agents configured and ready
  • Core components extracted and integrated
  • Database schema unified and enhanced
  • Frontend components merged and modernized
  • Monitoring configs created for all services

🚧 Development Roadmap

Phase 1: Foundation

  • Project consolidation and migration
  • Core services integration
  • Basic UI and API functionality
  • Agent connectivity and monitoring

Phase 2: Enhanced Features (In Progress)

  • Advanced workflow editor improvements
  • Real-time collaboration features
  • Enhanced agent capability mapping
  • Performance optimization

Phase 3: Advanced AI Integration

  • Multi-modal AI support (image, audio, video)
  • Custom model fine-tuning pipeline
  • Advanced MCP server integration
  • Intelligent task optimization

Phase 4: Enterprise Features

  • Multi-tenancy support
  • Advanced RBAC with LDAP integration
  • Compliance and audit logging
  • High availability deployment

🤝 Contributing

Development Setup

  1. Fork the repository
  2. Set up development environment: ./scripts/start_hive.sh
  3. Make your changes
  4. Test thoroughly
  5. Submit a pull request

Code Standards

  • Python: Black formatting, type hints, comprehensive tests
  • TypeScript: ESLint, strict type checking, component tests
  • Documentation: Clear comments and updated README files

📞 Support

Documentation

  • 📋 PROJECT_PLAN.md: Comprehensive project overview
  • 🏗️ ARCHITECTURE.md: Technical architecture details
  • 🔧 API Docs: http://localhost:8000/docs (when running)

Troubleshooting

  • Logs: docker-compose logs -f
  • Health Check: curl http://localhost:8000/health
  • Agent Status: Check Hive dashboard at http://localhost:3000

🎉 Welcome to Hive!

Hive represents the culmination of our distributed AI development efforts, providing a unified, scalable, and user-friendly platform for coordinating AI agents, managing workflows, and monitoring performance across our entire infrastructure.

🐝 "Individual agents are strong, but the Hive is unstoppable."

Ready to experience the future of distributed AI development?

./scripts/start_hive.sh
Description
No description provided
Readme 134 MiB
Languages
Python 48.9%
TypeScript 43.8%
Shell 3.6%
JavaScript 1.1%
MDX 1.1%
Other 1.5%