 d7ad321176
			
		
	
	d7ad321176
	
	
	
		
			
			This comprehensive implementation includes: - FastAPI backend with MCP server integration - React/TypeScript frontend with Vite - PostgreSQL database with Redis caching - Grafana/Prometheus monitoring stack - Docker Compose orchestration - Full MCP protocol support for Claude Code integration Features: - Agent discovery and management across network - Visual workflow editor and execution engine - Real-time task coordination and monitoring - Multi-model support with specialized agents - Distributed development task allocation 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
		
			
				
	
	
	
		
			19 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	🐝 Hive: Unified Distributed AI Orchestration Platform
Project Overview
Hive is a comprehensive distributed AI orchestration platform that consolidates the best components from our distributed AI development ecosystem into a single, powerful system for coordinating AI agents, managing workflows, and monitoring cluster performance.
🎯 Vision Statement
Create a unified platform that combines:
- Distributed AI Development coordination and monitoring
- Visual Workflow Orchestration with n8n compatibility
- Multi-Agent Task Distribution across specialized AI agents
- Real-time Performance Monitoring and alerting
- MCP Integration for standardized AI tool protocols
🏗️ System Architecture
┌─────────────────────────────────────────────────────────────────┐
│                        HIVE ORCHESTRATOR                        │
├─────────────────────────────────────────────────────────────────┤
│  Frontend Dashboard (React + TypeScript)                       │
│  ├── 🎛️  Agent Management & Monitoring                         │
│  ├── 🎨  Visual Workflow Editor (n8n-compatible)               │
│  ├── 📊  Real-time Performance Dashboard                       │
│  ├── 📋  Task Queue & Project Management                       │
│  └── ⚙️   System Configuration & Settings                      │
├─────────────────────────────────────────────────────────────────┤
│  Backend Services (FastAPI + Python)                           │
│  ├── 🧠  Hive Coordinator (unified orchestration)              │
│  ├── 🔄  Workflow Engine (n8n + MCP bridge)                    │
│  ├── 📡  Agent Communication (compressed protocols)            │
│  ├── 📈  Performance Monitor (metrics & alerts)                │
│  ├── 🔒  Authentication & Authorization                        │
│  └── 💾  Data Storage (workflows, configs, metrics)           │
├─────────────────────────────────────────────────────────────────┤
│  Agent Network (Ollama + Specialized Models)                   │
│  ├── 🏗️  ACACIA (Infrastructure & DevOps)                     │
│  ├── 🌐  WALNUT (Full-Stack Development)                       │
│  ├── ⚙️   IRONWOOD (Backend & Optimization)                    │
│  └── 🔌  [Expandable Agent Pool]                               │
└─────────────────────────────────────────────────────────────────┘
📦 Component Integration Plan
🔧 Core Components from Existing Projects
1. From distributed-ai-dev
- AIDevCoordinator: Task orchestration and agent management
- Agent Configuration: YAML-based agent profiles and capabilities
- Performance Monitoring: Real-time metrics and GPU monitoring
- Claudette Compression: Efficient agent communication protocols
- Quality Control: Multi-agent code review and validation
2. From McPlan
- Visual Workflow Editor: React Flow-based n8n-compatible designer
- Execution Engine: Real-time workflow execution with progress tracking
- WebSocket Infrastructure: Live updates and monitoring
- MCP Bridge: n8n workflow → MCP tool conversion
- Database Models: Workflow storage and execution history
3. From Cluster Monitoring
- Hardware Abstraction: Multi-GPU support and hardware profiling
- Alert System: Configurable alerts with severity levels
- Dashboard Components: React-based monitoring interfaces
- Time-series Storage: Performance data retention and analysis
4. From n8n-integration
- Workflow Patterns: Proven n8n integration examples
- Model Registry: 28+ available models across cluster endpoints
- Protocol Standards: Established communication patterns
🚀 Unified Architecture Components
1. Hive Coordinator Service
class HiveCoordinator:
    """
    Unified orchestration engine combining:
    - Agent coordination and task distribution
    - Workflow execution management  
    - Real-time monitoring and alerting
    - MCP server integration
    """
    
    # Core Services
    agent_manager: AgentManager
    workflow_engine: WorkflowEngine
    performance_monitor: PerformanceMonitor
    mcp_bridge: MCPBridge
    
    # API Interfaces
    rest_api: FastAPI
    websocket_manager: WebSocketManager
    
    # Configuration
    config: HiveConfig
    database: HiveDatabase
2. Database Schema Integration
-- Agent Management (enhanced from distributed-ai-dev)
agents (id, name, endpoint, specialization, capabilities, hardware_config)
agent_metrics (agent_id, timestamp, performance_data, gpu_metrics)
agent_capabilities (agent_id, capability, proficiency_score)
-- Workflow Management (from McPlan)
workflows (id, name, n8n_data, mcp_tools, created_by, version)
executions (id, workflow_id, status, input_data, output_data, logs)
execution_steps (execution_id, step_index, node_id, status, timing)
-- Task Coordination (enhanced)
tasks (id, title, description, priority, assigned_agent, status)
task_dependencies (task_id, depends_on_task_id)
projects (id, name, description, task_template, agent_assignments)
-- System Management
users (id, email, role, preferences, api_keys)
alerts (id, type, severity, message, resolved, timestamp)
system_config (key, value, category, description)
3. Frontend Component Architecture
// Unified Dashboard Structure
src/
├── components/
│   ├── dashboard/
│   │   ├── AgentMonitor.tsx        // Real-time agent status
│   │   ├── PerformanceDashboard.tsx // System metrics
│   │   └── SystemAlerts.tsx        // Alert management
│   ├── workflows/
│   │   ├── WorkflowEditor.tsx      // Visual n8n editor
│   │   ├── ExecutionMonitor.tsx    // Real-time execution
│   │   └── WorkflowLibrary.tsx     // Workflow management
│   ├── agents/
│   │   ├── AgentManager.tsx        // Agent configuration
│   │   ├── TaskQueue.tsx           // Task assignment
│   │   └── CapabilityMatrix.tsx    // Skills management
│   └── projects/
│       ├── ProjectDashboard.tsx    // Project overview
│       ├── TaskManagement.tsx      // Task coordination
│       └── QualityControl.tsx      // Code review
├── stores/
│   ├── hiveStore.ts               // Global state management
│   ├── agentStore.ts              // Agent-specific state
│   ├── workflowStore.ts           // Workflow state
│   └── performanceStore.ts        // Metrics state
└── services/
    ├── api.ts                     // REST API client
    ├── websocket.ts               // Real-time updates
    └── config.ts                  // Configuration management
4. Configuration System
# hive.yaml - Unified Configuration
hive:
  cluster:
    name: "Development Cluster"
    region: "home.deepblack.cloud"
    
  agents:
    acacia:
      name: "ACACIA Infrastructure Specialist"
      endpoint: "http://192.168.1.72:11434"
      model: "deepseek-r1:7b"
      specialization: "infrastructure"
      capabilities: ["devops", "architecture", "deployment"]
      hardware:
        gpu_type: "AMD Radeon RX 7900 XTX"
        vram_gb: 24
        cpu_cores: 16
      performance_targets:
        min_tps: 15
        max_response_time: 30
        
    walnut:
      name: "WALNUT Full-Stack Developer"
      endpoint: "http://192.168.1.27:11434"
      model: "starcoder2:15b"
      specialization: "full-stack"
      capabilities: ["frontend", "backend", "ui-design"]
      hardware:
        gpu_type: "NVIDIA RTX 4090"
        vram_gb: 24
        cpu_cores: 12
      performance_targets:
        min_tps: 20
        max_response_time: 25
        
    ironwood:
      name: "IRONWOOD Backend Specialist"
      endpoint: "http://192.168.1.113:11434"
      model: "deepseek-coder-v2"
      specialization: "backend"
      capabilities: ["optimization", "databases", "apis"]
      hardware:
        gpu_type: "NVIDIA RTX 4080"
        vram_gb: 16
        cpu_cores: 8
      performance_targets:
        min_tps: 18
        max_response_time: 35
  workflows:
    templates:
      web_development:
        agents: ["walnut", "ironwood"]
        stages: ["planning", "frontend", "backend", "integration", "testing"]
      infrastructure:
        agents: ["acacia", "ironwood"]
        stages: ["design", "provisioning", "deployment", "monitoring"]
        
  monitoring:
    metrics_retention_days: 30
    alert_thresholds:
      cpu_usage: 85
      memory_usage: 90
      gpu_usage: 95
      response_time: 60
    health_check_interval: 30
    
  mcp_servers:
    registry:
      comfyui: "ws://localhost:8188/api/mcp"
      code_review: "http://localhost:8000/mcp"
      
  security:
    require_approval: true
    api_rate_limit: 100
    session_timeout: 3600
🗂️ Project Structure
hive/
├── 📋 PROJECT_PLAN.md              # This document
├── 🚀 DEPLOYMENT.md                # Infrastructure deployment guide
├── 🔧 DEVELOPMENT.md               # Development setup and guidelines
├── 📊 ARCHITECTURE.md              # Detailed technical architecture
│
├── backend/                        # Python FastAPI backend
│   ├── app/
│   │   ├── core/                   # Core services
│   │   │   ├── hive_coordinator.py # Main orchestration engine
│   │   │   ├── agent_manager.py    # Agent lifecycle management
│   │   │   ├── workflow_engine.py  # n8n workflow execution
│   │   │   ├── mcp_bridge.py       # MCP protocol integration
│   │   │   └── performance_monitor.py # Metrics and alerting
│   │   ├── api/                    # REST API endpoints
│   │   │   ├── agents.py           # Agent management API
│   │   │   ├── workflows.py        # Workflow API
│   │   │   ├── executions.py       # Execution API
│   │   │   ├── monitoring.py       # Metrics API
│   │   │   └── projects.py         # Project management API
│   │   ├── models/                 # Database models
│   │   │   ├── agent.py
│   │   │   ├── workflow.py
│   │   │   ├── execution.py
│   │   │   ├── task.py
│   │   │   └── user.py
│   │   ├── services/               # Business logic
│   │   └── utils/                  # Helper functions
│   ├── migrations/                 # Database migrations
│   ├── tests/                      # Backend tests
│   └── requirements.txt
│
├── frontend/                       # React TypeScript frontend
│   ├── src/
│   │   ├── components/             # React components
│   │   ├── stores/                 # State management
│   │   ├── services/               # API clients
│   │   ├── types/                  # TypeScript definitions
│   │   ├── hooks/                  # Custom React hooks
│   │   └── utils/                  # Helper functions
│   ├── public/
│   ├── package.json
│   └── vite.config.ts
│
├── config/                         # Configuration files
│   ├── hive.yaml                   # Main configuration
│   ├── agents/                     # Agent-specific configs
│   ├── workflows/                  # Workflow templates
│   └── monitoring/                 # Monitoring configs
│
├── scripts/                        # Utility scripts
│   ├── setup.sh                    # Initial setup
│   ├── deploy.sh                   # Deployment automation
│   ├── migrate.py                  # Data migration from existing projects
│   └── health_check.py             # System health validation
│
├── docker/                         # Container configuration
│   ├── docker-compose.yml          # Development environment
│   ├── docker-compose.prod.yml     # Production deployment
│   ├── Dockerfile.backend
│   ├── Dockerfile.frontend
│   └── nginx.conf                  # Reverse proxy config
│
├── docs/                           # Documentation
│   ├── api/                        # API documentation
│   ├── user-guide/                 # User documentation
│   ├── admin-guide/                # Administration guide
│   └── developer-guide/            # Development documentation
│
└── tests/                          # Integration tests
    ├── e2e/                        # End-to-end tests
    ├── integration/                # Integration tests
    └── performance/                # Performance tests
🔄 Migration Strategy
Phase 1: Foundation (Week 1-2)
- 
Project Setup - Create unified project structure
- Set up development environment
- Initialize database schema
- Configure CI/CD pipeline
 
- 
Core Integration - Merge AIDevCoordinator and McPlan execution engine
- Unify configuration systems (YAML + database)
- Integrate authentication systems
- Set up basic API endpoints
 
Phase 2: Backend Services (Week 3-4)
- 
Agent Management - Implement unified agent registration and discovery
- Migrate agent hardware profiling and monitoring
- Add capability-based task assignment
- Integrate performance metrics collection
 
- 
Workflow Engine - Port n8n workflow parsing and execution
- Implement MCP bridge functionality
- Add real-time execution monitoring
- Create workflow template system
 
Phase 3: Frontend Development (Week 5-6)
- 
Dashboard Integration - Merge monitoring dashboards from both projects
- Create unified navigation and layout
- Implement real-time WebSocket updates
- Add responsive design for mobile access
 
- 
Workflow Editor - Port React Flow visual editor
- Enhance with Hive-specific features
- Add template library and sharing
- Implement collaborative editing
 
Phase 4: Advanced Features (Week 7-8)
- 
Quality Control - Implement multi-agent code review
- Add automated testing coordination
- Create approval workflow system
- Integrate security scanning
 
- 
Performance Optimization - Add intelligent load balancing
- Implement caching strategies
- Optimize database queries
- Add performance analytics
 
Phase 5: Production Deployment (Week 9-10)
- 
Infrastructure - Set up Docker Swarm deployment
- Configure SSL/TLS and domain routing
- Implement backup and recovery
- Add monitoring and alerting
 
- 
Documentation & Training - Complete user documentation
- Create admin guides
- Record demo videos
- Conduct user training
 
🎯 Success Metrics
Technical Metrics
- Agent Utilization: >80% average utilization across cluster
- Response Time: <30 seconds average for workflow execution
- Throughput: >50 concurrent task executions
- Uptime: 99.9% system availability
- Performance: <2 second UI response time
User Experience Metrics
- Workflow Creation: <5 minutes to create and deploy simple workflow
- Agent Discovery: Automatic agent health detection within 30 seconds
- Error Recovery: <1 minute mean time to recovery
- Learning Curve: <2 hours for new user onboarding
Business Metrics
- Development Velocity: 50% reduction in multi-agent coordination time
- Code Quality: 90% automated test coverage
- Scalability: Support for 10+ concurrent projects
- Maintainability: <24 hours for feature additions
🔧 Technology Stack
Backend
- Framework: FastAPI + Python 3.11+
- Database: PostgreSQL + Redis (caching)
- Message Queue: Redis + Celery
- Monitoring: Prometheus + Grafana
- Documentation: OpenAPI/Swagger
Frontend
- Framework: React 18 + TypeScript
- UI Library: Tailwind CSS + Headless UI
- State Management: Zustand + React Query
- Visualization: React Flow + D3.js
- Build Tool: Vite
Infrastructure
- Containers: Docker + Docker Swarm
- Reverse Proxy: Traefik v3
- SSL/TLS: Let's Encrypt
- Storage: NFS + PostgreSQL
- Monitoring: Grafana + Prometheus
Development
- Version Control: Git + GitLab
- CI/CD: GitLab CI + Docker Registry
- Testing: pytest + Jest + Playwright
- Code Quality: Black + ESLint + TypeScript
🚀 Quick Start Guide
Development Setup
# Clone and setup
git clone <hive-repo>
cd hive
# Start development environment
./scripts/setup.sh
docker-compose up -d
# Access services
# Frontend: http://localhost:3000
# Backend API: http://localhost:8000
# Documentation: http://localhost:8000/docs
Production Deployment
# Deploy to Docker Swarm
./scripts/deploy.sh production
# Access production services
# Web Interface: https://hive.home.deepblack.cloud
# API: https://hive.home.deepblack.cloud/api
# Monitoring: https://grafana.home.deepblack.cloud
🔮 Future Enhancements
Phase 6: Advanced AI Integration (Month 3-4)
- Multi-modal AI: Image, audio, and video processing
- Fine-tuning Pipeline: Custom model training coordination
- Model Registry: Centralized model management and versioning
- A/B Testing: Automated model comparison and selection
Phase 7: Enterprise Features (Month 5-6)
- Multi-tenancy: Organization and team isolation
- RBAC: Role-based access control with LDAP integration
- Audit Logging: Comprehensive activity tracking
- Compliance: SOC2, GDPR compliance features
Phase 8: Ecosystem Integration (Month 7-8)
- Cloud Providers: AWS, GCP, Azure integration
- CI/CD Integration: GitHub Actions, Jenkins plugins
- API Gateway: External API management and rate limiting
- Marketplace: Community workflow and agent sharing
📞 Support and Community
Documentation
- User Guide: Step-by-step tutorials and examples
- API Reference: Complete API documentation with examples
- Admin Guide: Deployment, configuration, and maintenance
- Developer Guide: Contributing, architecture, and extensions
Community
- Discord: Real-time support and discussions
- GitHub: Issue tracking and feature requests
- Wiki: Community-contributed documentation
- Newsletter: Monthly updates and best practices
Hive represents the culmination of our distributed AI development efforts, providing a unified, scalable, and user-friendly platform for coordinating AI agents, managing workflows, and monitoring performance across our entire infrastructure.
🐝 "Individual agents are strong, but the Hive is unstoppable."