This comprehensive implementation includes: - FastAPI backend with MCP server integration - React/TypeScript frontend with Vite - PostgreSQL database with Redis caching - Grafana/Prometheus monitoring stack - Docker Compose orchestration - Full MCP protocol support for Claude Code integration Features: - Agent discovery and management across network - Visual workflow editor and execution engine - Real-time task coordination and monitoring - Multi-model support with specialized agents - Distributed development task allocation 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
19 KiB
🐝 Hive: Unified Distributed AI Orchestration Platform
Project Overview
Hive is a comprehensive distributed AI orchestration platform that consolidates the best components from our distributed AI development ecosystem into a single, powerful system for coordinating AI agents, managing workflows, and monitoring cluster performance.
🎯 Vision Statement
Create a unified platform that combines:
- Distributed AI Development coordination and monitoring
- Visual Workflow Orchestration with n8n compatibility
- Multi-Agent Task Distribution across specialized AI agents
- Real-time Performance Monitoring and alerting
- MCP Integration for standardized AI tool protocols
🏗️ System Architecture
┌─────────────────────────────────────────────────────────────────┐
│ HIVE ORCHESTRATOR │
├─────────────────────────────────────────────────────────────────┤
│ Frontend Dashboard (React + TypeScript) │
│ ├── 🎛️ Agent Management & Monitoring │
│ ├── 🎨 Visual Workflow Editor (n8n-compatible) │
│ ├── 📊 Real-time Performance Dashboard │
│ ├── 📋 Task Queue & Project Management │
│ └── ⚙️ System Configuration & Settings │
├─────────────────────────────────────────────────────────────────┤
│ Backend Services (FastAPI + Python) │
│ ├── 🧠 Hive Coordinator (unified orchestration) │
│ ├── 🔄 Workflow Engine (n8n + MCP bridge) │
│ ├── 📡 Agent Communication (compressed protocols) │
│ ├── 📈 Performance Monitor (metrics & alerts) │
│ ├── 🔒 Authentication & Authorization │
│ └── 💾 Data Storage (workflows, configs, metrics) │
├─────────────────────────────────────────────────────────────────┤
│ Agent Network (Ollama + Specialized Models) │
│ ├── 🏗️ ACACIA (Infrastructure & DevOps) │
│ ├── 🌐 WALNUT (Full-Stack Development) │
│ ├── ⚙️ IRONWOOD (Backend & Optimization) │
│ └── 🔌 [Expandable Agent Pool] │
└─────────────────────────────────────────────────────────────────┘
📦 Component Integration Plan
🔧 Core Components from Existing Projects
1. From distributed-ai-dev
- AIDevCoordinator: Task orchestration and agent management
- Agent Configuration: YAML-based agent profiles and capabilities
- Performance Monitoring: Real-time metrics and GPU monitoring
- Claudette Compression: Efficient agent communication protocols
- Quality Control: Multi-agent code review and validation
2. From McPlan
- Visual Workflow Editor: React Flow-based n8n-compatible designer
- Execution Engine: Real-time workflow execution with progress tracking
- WebSocket Infrastructure: Live updates and monitoring
- MCP Bridge: n8n workflow → MCP tool conversion
- Database Models: Workflow storage and execution history
3. From Cluster Monitoring
- Hardware Abstraction: Multi-GPU support and hardware profiling
- Alert System: Configurable alerts with severity levels
- Dashboard Components: React-based monitoring interfaces
- Time-series Storage: Performance data retention and analysis
4. From n8n-integration
- Workflow Patterns: Proven n8n integration examples
- Model Registry: 28+ available models across cluster endpoints
- Protocol Standards: Established communication patterns
🚀 Unified Architecture Components
1. Hive Coordinator Service
class HiveCoordinator:
"""
Unified orchestration engine combining:
- Agent coordination and task distribution
- Workflow execution management
- Real-time monitoring and alerting
- MCP server integration
"""
# Core Services
agent_manager: AgentManager
workflow_engine: WorkflowEngine
performance_monitor: PerformanceMonitor
mcp_bridge: MCPBridge
# API Interfaces
rest_api: FastAPI
websocket_manager: WebSocketManager
# Configuration
config: HiveConfig
database: HiveDatabase
2. Database Schema Integration
-- Agent Management (enhanced from distributed-ai-dev)
agents (id, name, endpoint, specialization, capabilities, hardware_config)
agent_metrics (agent_id, timestamp, performance_data, gpu_metrics)
agent_capabilities (agent_id, capability, proficiency_score)
-- Workflow Management (from McPlan)
workflows (id, name, n8n_data, mcp_tools, created_by, version)
executions (id, workflow_id, status, input_data, output_data, logs)
execution_steps (execution_id, step_index, node_id, status, timing)
-- Task Coordination (enhanced)
tasks (id, title, description, priority, assigned_agent, status)
task_dependencies (task_id, depends_on_task_id)
projects (id, name, description, task_template, agent_assignments)
-- System Management
users (id, email, role, preferences, api_keys)
alerts (id, type, severity, message, resolved, timestamp)
system_config (key, value, category, description)
3. Frontend Component Architecture
// Unified Dashboard Structure
src/
├── components/
│ ├── dashboard/
│ │ ├── AgentMonitor.tsx // Real-time agent status
│ │ ├── PerformanceDashboard.tsx // System metrics
│ │ └── SystemAlerts.tsx // Alert management
│ ├── workflows/
│ │ ├── WorkflowEditor.tsx // Visual n8n editor
│ │ ├── ExecutionMonitor.tsx // Real-time execution
│ │ └── WorkflowLibrary.tsx // Workflow management
│ ├── agents/
│ │ ├── AgentManager.tsx // Agent configuration
│ │ ├── TaskQueue.tsx // Task assignment
│ │ └── CapabilityMatrix.tsx // Skills management
│ └── projects/
│ ├── ProjectDashboard.tsx // Project overview
│ ├── TaskManagement.tsx // Task coordination
│ └── QualityControl.tsx // Code review
├── stores/
│ ├── hiveStore.ts // Global state management
│ ├── agentStore.ts // Agent-specific state
│ ├── workflowStore.ts // Workflow state
│ └── performanceStore.ts // Metrics state
└── services/
├── api.ts // REST API client
├── websocket.ts // Real-time updates
└── config.ts // Configuration management
4. Configuration System
# hive.yaml - Unified Configuration
hive:
cluster:
name: "Development Cluster"
region: "home.deepblack.cloud"
agents:
acacia:
name: "ACACIA Infrastructure Specialist"
endpoint: "http://192.168.1.72:11434"
model: "deepseek-r1:7b"
specialization: "infrastructure"
capabilities: ["devops", "architecture", "deployment"]
hardware:
gpu_type: "AMD Radeon RX 7900 XTX"
vram_gb: 24
cpu_cores: 16
performance_targets:
min_tps: 15
max_response_time: 30
walnut:
name: "WALNUT Full-Stack Developer"
endpoint: "http://192.168.1.27:11434"
model: "starcoder2:15b"
specialization: "full-stack"
capabilities: ["frontend", "backend", "ui-design"]
hardware:
gpu_type: "NVIDIA RTX 4090"
vram_gb: 24
cpu_cores: 12
performance_targets:
min_tps: 20
max_response_time: 25
ironwood:
name: "IRONWOOD Backend Specialist"
endpoint: "http://192.168.1.113:11434"
model: "deepseek-coder-v2"
specialization: "backend"
capabilities: ["optimization", "databases", "apis"]
hardware:
gpu_type: "NVIDIA RTX 4080"
vram_gb: 16
cpu_cores: 8
performance_targets:
min_tps: 18
max_response_time: 35
workflows:
templates:
web_development:
agents: ["walnut", "ironwood"]
stages: ["planning", "frontend", "backend", "integration", "testing"]
infrastructure:
agents: ["acacia", "ironwood"]
stages: ["design", "provisioning", "deployment", "monitoring"]
monitoring:
metrics_retention_days: 30
alert_thresholds:
cpu_usage: 85
memory_usage: 90
gpu_usage: 95
response_time: 60
health_check_interval: 30
mcp_servers:
registry:
comfyui: "ws://localhost:8188/api/mcp"
code_review: "http://localhost:8000/mcp"
security:
require_approval: true
api_rate_limit: 100
session_timeout: 3600
🗂️ Project Structure
hive/
├── 📋 PROJECT_PLAN.md # This document
├── 🚀 DEPLOYMENT.md # Infrastructure deployment guide
├── 🔧 DEVELOPMENT.md # Development setup and guidelines
├── 📊 ARCHITECTURE.md # Detailed technical architecture
│
├── backend/ # Python FastAPI backend
│ ├── app/
│ │ ├── core/ # Core services
│ │ │ ├── hive_coordinator.py # Main orchestration engine
│ │ │ ├── agent_manager.py # Agent lifecycle management
│ │ │ ├── workflow_engine.py # n8n workflow execution
│ │ │ ├── mcp_bridge.py # MCP protocol integration
│ │ │ └── performance_monitor.py # Metrics and alerting
│ │ ├── api/ # REST API endpoints
│ │ │ ├── agents.py # Agent management API
│ │ │ ├── workflows.py # Workflow API
│ │ │ ├── executions.py # Execution API
│ │ │ ├── monitoring.py # Metrics API
│ │ │ └── projects.py # Project management API
│ │ ├── models/ # Database models
│ │ │ ├── agent.py
│ │ │ ├── workflow.py
│ │ │ ├── execution.py
│ │ │ ├── task.py
│ │ │ └── user.py
│ │ ├── services/ # Business logic
│ │ └── utils/ # Helper functions
│ ├── migrations/ # Database migrations
│ ├── tests/ # Backend tests
│ └── requirements.txt
│
├── frontend/ # React TypeScript frontend
│ ├── src/
│ │ ├── components/ # React components
│ │ ├── stores/ # State management
│ │ ├── services/ # API clients
│ │ ├── types/ # TypeScript definitions
│ │ ├── hooks/ # Custom React hooks
│ │ └── utils/ # Helper functions
│ ├── public/
│ ├── package.json
│ └── vite.config.ts
│
├── config/ # Configuration files
│ ├── hive.yaml # Main configuration
│ ├── agents/ # Agent-specific configs
│ ├── workflows/ # Workflow templates
│ └── monitoring/ # Monitoring configs
│
├── scripts/ # Utility scripts
│ ├── setup.sh # Initial setup
│ ├── deploy.sh # Deployment automation
│ ├── migrate.py # Data migration from existing projects
│ └── health_check.py # System health validation
│
├── docker/ # Container configuration
│ ├── docker-compose.yml # Development environment
│ ├── docker-compose.prod.yml # Production deployment
│ ├── Dockerfile.backend
│ ├── Dockerfile.frontend
│ └── nginx.conf # Reverse proxy config
│
├── docs/ # Documentation
│ ├── api/ # API documentation
│ ├── user-guide/ # User documentation
│ ├── admin-guide/ # Administration guide
│ └── developer-guide/ # Development documentation
│
└── tests/ # Integration tests
├── e2e/ # End-to-end tests
├── integration/ # Integration tests
└── performance/ # Performance tests
🔄 Migration Strategy
Phase 1: Foundation (Week 1-2)
-
Project Setup
- Create unified project structure
- Set up development environment
- Initialize database schema
- Configure CI/CD pipeline
-
Core Integration
- Merge AIDevCoordinator and McPlan execution engine
- Unify configuration systems (YAML + database)
- Integrate authentication systems
- Set up basic API endpoints
Phase 2: Backend Services (Week 3-4)
-
Agent Management
- Implement unified agent registration and discovery
- Migrate agent hardware profiling and monitoring
- Add capability-based task assignment
- Integrate performance metrics collection
-
Workflow Engine
- Port n8n workflow parsing and execution
- Implement MCP bridge functionality
- Add real-time execution monitoring
- Create workflow template system
Phase 3: Frontend Development (Week 5-6)
-
Dashboard Integration
- Merge monitoring dashboards from both projects
- Create unified navigation and layout
- Implement real-time WebSocket updates
- Add responsive design for mobile access
-
Workflow Editor
- Port React Flow visual editor
- Enhance with Hive-specific features
- Add template library and sharing
- Implement collaborative editing
Phase 4: Advanced Features (Week 7-8)
-
Quality Control
- Implement multi-agent code review
- Add automated testing coordination
- Create approval workflow system
- Integrate security scanning
-
Performance Optimization
- Add intelligent load balancing
- Implement caching strategies
- Optimize database queries
- Add performance analytics
Phase 5: Production Deployment (Week 9-10)
-
Infrastructure
- Set up Docker Swarm deployment
- Configure SSL/TLS and domain routing
- Implement backup and recovery
- Add monitoring and alerting
-
Documentation & Training
- Complete user documentation
- Create admin guides
- Record demo videos
- Conduct user training
🎯 Success Metrics
Technical Metrics
- Agent Utilization: >80% average utilization across cluster
- Response Time: <30 seconds average for workflow execution
- Throughput: >50 concurrent task executions
- Uptime: 99.9% system availability
- Performance: <2 second UI response time
User Experience Metrics
- Workflow Creation: <5 minutes to create and deploy simple workflow
- Agent Discovery: Automatic agent health detection within 30 seconds
- Error Recovery: <1 minute mean time to recovery
- Learning Curve: <2 hours for new user onboarding
Business Metrics
- Development Velocity: 50% reduction in multi-agent coordination time
- Code Quality: 90% automated test coverage
- Scalability: Support for 10+ concurrent projects
- Maintainability: <24 hours for feature additions
🔧 Technology Stack
Backend
- Framework: FastAPI + Python 3.11+
- Database: PostgreSQL + Redis (caching)
- Message Queue: Redis + Celery
- Monitoring: Prometheus + Grafana
- Documentation: OpenAPI/Swagger
Frontend
- Framework: React 18 + TypeScript
- UI Library: Tailwind CSS + Headless UI
- State Management: Zustand + React Query
- Visualization: React Flow + D3.js
- Build Tool: Vite
Infrastructure
- Containers: Docker + Docker Swarm
- Reverse Proxy: Traefik v3
- SSL/TLS: Let's Encrypt
- Storage: NFS + PostgreSQL
- Monitoring: Grafana + Prometheus
Development
- Version Control: Git + GitLab
- CI/CD: GitLab CI + Docker Registry
- Testing: pytest + Jest + Playwright
- Code Quality: Black + ESLint + TypeScript
🚀 Quick Start Guide
Development Setup
# Clone and setup
git clone <hive-repo>
cd hive
# Start development environment
./scripts/setup.sh
docker-compose up -d
# Access services
# Frontend: http://localhost:3000
# Backend API: http://localhost:8000
# Documentation: http://localhost:8000/docs
Production Deployment
# Deploy to Docker Swarm
./scripts/deploy.sh production
# Access production services
# Web Interface: https://hive.home.deepblack.cloud
# API: https://hive.home.deepblack.cloud/api
# Monitoring: https://grafana.home.deepblack.cloud
🔮 Future Enhancements
Phase 6: Advanced AI Integration (Month 3-4)
- Multi-modal AI: Image, audio, and video processing
- Fine-tuning Pipeline: Custom model training coordination
- Model Registry: Centralized model management and versioning
- A/B Testing: Automated model comparison and selection
Phase 7: Enterprise Features (Month 5-6)
- Multi-tenancy: Organization and team isolation
- RBAC: Role-based access control with LDAP integration
- Audit Logging: Comprehensive activity tracking
- Compliance: SOC2, GDPR compliance features
Phase 8: Ecosystem Integration (Month 7-8)
- Cloud Providers: AWS, GCP, Azure integration
- CI/CD Integration: GitHub Actions, Jenkins plugins
- API Gateway: External API management and rate limiting
- Marketplace: Community workflow and agent sharing
📞 Support and Community
Documentation
- User Guide: Step-by-step tutorials and examples
- API Reference: Complete API documentation with examples
- Admin Guide: Deployment, configuration, and maintenance
- Developer Guide: Contributing, architecture, and extensions
Community
- Discord: Real-time support and discussions
- GitHub: Issue tracking and feature requests
- Wiki: Community-contributed documentation
- Newsletter: Monthly updates and best practices
Hive represents the culmination of our distributed AI development efforts, providing a unified, scalable, and user-friendly platform for coordinating AI agents, managing workflows, and monitoring performance across our entire infrastructure.
🐝 "Individual agents are strong, but the Hive is unstoppable."